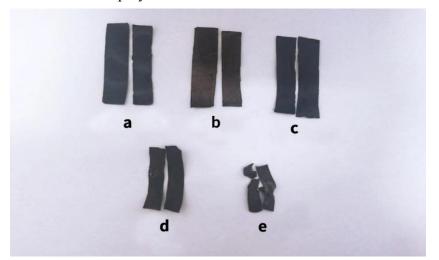

Nickel nanocrystal/nitrogen-doped carbon composites as efficient and carbon monoxide-resistant electrocatalysts for methanol oxidation reaction

Na Wu,^{a,b} Meixu Zhai,^a Fei Chen,^a Xue Zhang,^a Ruihong Guo,^a Tuoping Hu,^{*a} Mingming Ma^{*a,c}


- a. Department of Chemistry, College of Science, North University of China, Taiyuan, Shanxi 030051, China
- b. Department of Chemistry and Chemical Engineering, Lvliang University, Lvliang, Shanxi 033001, China
- c. CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China

*Correspondence: hutuopingsx@126.com, mma@ustc.edu.cn

Electronic Supplementary Information

Fig. S1. The photographs of polyaniline-polyvinyl alcohol hydrogel synthesis. Immediately after mixing solution A and B, the mixture turns into blue color, indicating the formation of polyaniline.

Fig. S2. The photographs of samples during the five synthesis steps. a) as-prepared PPH hydrogel; b) after ammonia solution treatment; c) after absorption of NiCl₂ salt; d) after freeze-drying; e) after calcination.

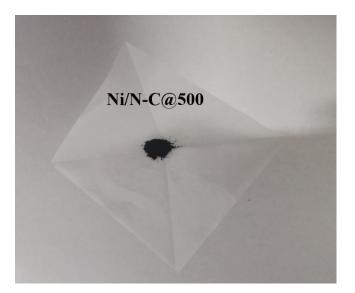


Fig. S3. The photograph of Ni/N-C@500 powders.

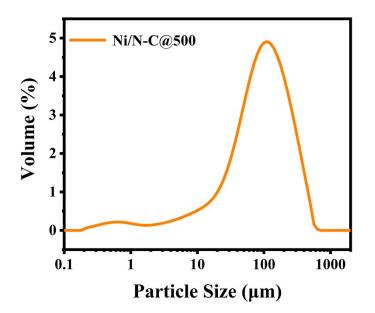
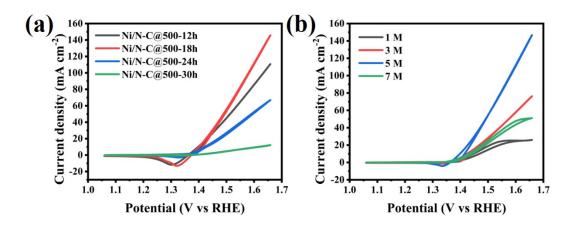
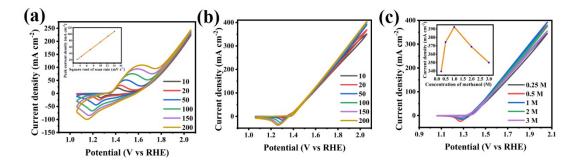




Fig. S4. The particle size distribution of Ni/N-C@500.

Fig. S5. CV curves of the electrocatalysts prepared (a) with different soaking time and (b) with different concentration of nickel chloride solution. The CV curves were measured at 10 mV s⁻¹ in 1 mol L⁻¹ KOH and 1.0 mol L⁻¹ methanol.

Fig. S6. Electrochemical characterization of Ni/N-C@500 in different electrolyte solutions. (a) CV curves of Ni/N-C@500 in 1 M KOH and (b) in 1 M KOH with 1 M methanol at different scan rate (10-200 mV s⁻¹). Inset of (a) shows the relation between the oxidation peak current and the square root of the scan rate. (c) CV curves of Ni/N-C@500 in 1 M KOH solution with different concentration of methanol (0.25-3 M, scan rate: 50 mV s⁻¹). Inset of (c) shows the relation between the oxidation peak current and the different concentration of methanol.

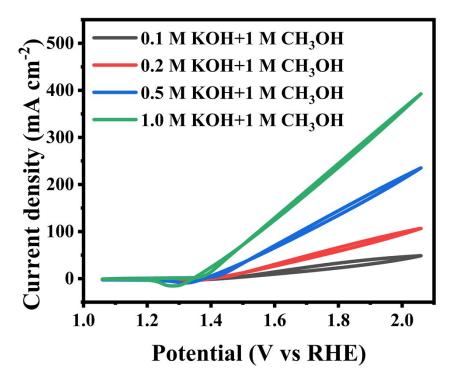
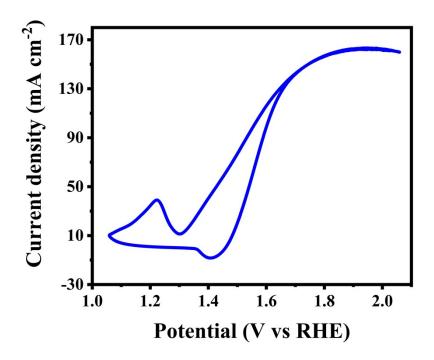



Fig. S7. CV curves of Ni/N-C@500 in 1 M methanol solution with different concentration of KOH (0.1-1 M, scan rate: 50 mV s^{-1}).

Fig. S8. CV curve of Ni/N-C@500 in 1M KOH and 1 M methanol solution subtracts the CV curve of Ni/N-C@500 in 1M KOH (scan rate: 50 mV s⁻¹).

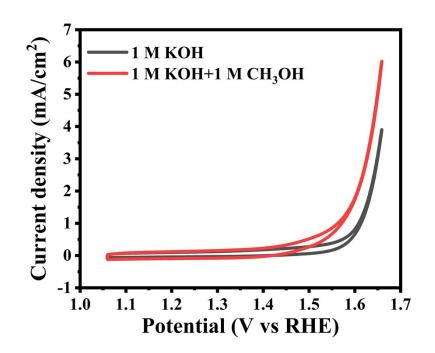


Fig. S9. CV curves of the N-C@500 in 1 M KOH and 1 M methanol solution.

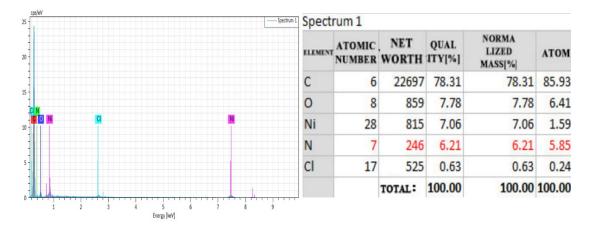


Fig. S10. EDS spectra of Ni/N-C@500.

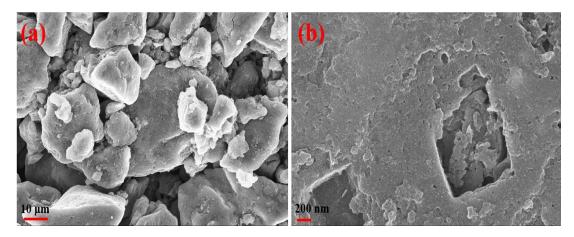


Fig. S11. SEM images of Ni/N-C@500 electrocatalyst after 12-h MOR test.

pyrolysis	current density fo	r C _{dl}	ECSA
temperature (°C)	MOR (mA cm^{-2})	$(mF cm^{-2})$	
400	73.5	3.2	80
500	147	4.29	107
600	97.6	3.62	90.5

 Table S1. Comparison of the Ni/N-C composites prepared at different pyrolysis temperatures.

The current densities were taken at a fixed potential of 0.6 V vs SCE.