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A. Nupack DNA analysis

To confirm the thermodynamic binding behavior of the designed sequences, we use the NUPACK oligo simulator [1].
Based on SantaLucia thermodynamics calculations, NUPACK provides the melting profile for arbitrary sequences of
oligomers at desired concentrations and salt conditions (more precisely, the T -dependence of the fraction of unbonded
base pairs).

Fig. S1, shows the T -behavior associated with the self-assembly of the tetravalent particles as well as of the isolated
sticky sequences (forming the AB bonds). Here, the strand concentrations are fixed at 313µM (corresponding to
the largest sample concentration c = 20 mg/ml) and the salt concentration at 250 mM of NaCl, respectively. As
can be noted, the gap in the melting temperatures between the particle assembly (see magenta points) with respect
to their sticky-end hybridization (blue) guarantees a net separation between the self-assembly of the nanostructures
(TNS ' 77◦C) and the formation of the interparticle bonds (Tb ' 42◦C).

Figure S1: Melting curves calculated using NUPACK oligo analyzer [1] for both the NS arms (magenta) and the
sticky tips (blue). Note that the self-assembly of the NS precedes on cooling the binding of the sticky sequences.

B. Preparation of simulation initial configuration

The simulation box is filled by placing the tetramers one after the other until the desired number N of tetramers
is reached. Each tetramer is placed with random orientation and at a random position within the box. Then, the
insertion energy is calculated: if the computed energy is larger than a predefined threshold (the thermal energy at
3×104 K), the tetramer is moved to a new position/orientation. The energy check is then repeated until the insertion
energy is less than the threshold. The resulting configuration is then equilibrated to 75◦C. This configuration – in
which all tetramers are not bonded – is then used as the starting configuration at the desired simulated temperature.

C. Bond definition in the numerical study

In the numerical study, we have defined a bond between an A and a B arm as a double-helix section of at least
five bases. This value is sufficiently large to exclude temporary association with just a few bases. To provide evidence
that results are robust respect to this threshold value, we show in Fig. S2 the cluster distribution obtained at long
times for the simulations at c = 2 mg/ml, N = 1000 (left) and c = 20 mg/ml, N = 2000 (right) when varying the
number of bases used in the bond definition.
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Figure S2: Effect of the choice of the minimum number of bases (nbases) used to discriminate bonded and
non-bonded nanostars.

D. Considerations about the cluster free-energy and Flory-Stockmayer approach

Here, we relate the bond probability assumed in the Flory-Stokmayer (FS) theory [2, 3] to the partition function of
a bond. The FS theory assumes a value for the bond probability pb. In the hyperbranched ABf−1 case, pb = #b/N ,
being #b the number of bonds in the system and N the total number of possible bonds (equal to the number of
monomers). In a thermodynamic approach, pb is controlled by the interaction potential and by the state variables T
and V .

Let us consider a solution of N A-patches and N(f − 1) B-patches. We assume that an equilibrium is established
between bonded and non-bonded interactions, the latter quantified by a bonding volume Vb and a bonding energy
εAB . The mass-action law relates the number of reacted (NAB) and unreacted (NA and NB) A- and B-patches to
their partition functions as [4]

NAB
NANB

=
QAB
QAQB

. (1)

Neglecting intramolecular effects, to a first approximation, QA = QB = V/Λ3 (where Λ is the de Broglie wavelength
originating from the integration over momenta) and

QAB =
V Vb
Λ6

e−βεAB , (2)

so that

NAB
NANB

=
Vb
V

e−βεAB . (3)

Since NAB is equal to the number of AB bonds in the system (#b), we can write for the number of unreacted A-
and B-patches, respectively, NA = N − #b and NB = N(f − 1) − #b. Hence, the left hand side of Eq. (1) can be
rewritten as

NAB
NANB

=
#b

(N −#b)[N(f − 1)−#b]

=
pb

(1− pb)[(f − 1)− pb]
, (4)

from which it follows that

pb
(1− pb)[(f − 1)− pb]

=
NVb
V

e−βεAB . (5)
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This last relation provides the connection between the model parameters (Vb, εAB), V , and T and the bond probability
pb.

Starting from the thermodynamics expression for non-interacting clusters, one can write the number of clusters of
size n resulting from the association process of the A- and B-patches as

Nc(n) = Qnz
n, (6)

where z plays the role of the Lagrange multiplier controlling the total number of particles in the system, which can
also be expressed in terms of the number of unreacted particles (clusters of size 1, Nc(1)), since

z =
Nc(1)

Q1
=
Nc(1)Λ3

V
. (7)

The number of free monomers can be estimated using the FS relation

Nc(1) = N(1− pb)
(

1− pb
f − 1

)f−1
, (8)

which expresses the fact that all the monomers must have one A and (f − 1) B sites unbonded (we recall that the
probability that a B site is unbonded is #b/[N(f − 1)]). Then,

Nc(1)

V
= ρ(1− pb)

(
1− pb

f − 1

)f−1
(9)

and we can write, by defining ρ = N/V and ρ1 = Nc(1)/V , and equating Eq. (7) and Eq. (9),

ρ1
ρ

=
zΛ−3

ρ
= (1− pb)

(
1− pb

f − 1

)f−1
. (10)

Substituting this expression (to the power n) in the FS cluster size distribution (Eq. (1) of the manuscript, here
reproduced)

Nc(n) = N(1− pb)
[(f − 1)n]!

n![(f − 2)n+ 1]!

pn−1b (f − 1− pb)(f−2)n+1

(f − 1)(f−1)n
, (11)

one finds

Nc(n) = N(1− pb)D(n, f) pn−1b

(f − 1− pb)1−n

(1− pb)n

(
zΛ−3

ρ

)n
, (12)

where

D(n, f) =
[(f − 1)n]!

n![(f − 2)n+ 1]!
. (13)

Simplifying and making use of the relation in Eq. (5),

Nc(n)

V
=
N

V
D(n, f)

(
NVb
V

e−βεAB

)n−1(
zΛ−3

ρ

)n
= D(n, f)

(
Vbe
−βεAB

)n−1
(zΛ−3)n. (14)

Defining a reference volume Vref, one can define a reference bonding free-energy Fbond as [5]

e−βFbond(Vref,T ) =
Vb
Vref

e−βεAB , (15)

such that

Nc(n) =
V

Vref
D(n, f)

(
e−βFbond(Vref,T )

)n−1
(zVrefΛ

−3)n. (16)
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By comparing the definition of Fbond and Eq. (5), it follows that

pb
(1− pb)[(f − 1)− pb]

=
NVref
V

e−βFbond , (17)

which provides the link between the bond probability and the bonding free-energy.
Redefining z as (zVrefΛ

−3) and comparing Eq. (16) and Eq. (6), the partition function of a cluster of size n with
no loops (NL) can be identified as

QNL
n =

V

Vref
D(n, f)

(
e−βFbond(Vref,T )

)n−1
, (18)

which clearly shows the cluster center of mass contribution V , the combinatorial contribution D(n, f), and the
contribution arising from the n− 1 bonds.

Assuming that loops are also possible, one needs to add the contribution which includes the loops to the FS partition
function. The additional intracluster bond adds a term proportional to Vbe

−βεAB . Then, we propose to write the
partition function of clusters with loops (L) as

QL
n = QNL

n g(n, β) e−βFbond(Vref,T ), (19)

where the system-dependent factor g(n, β) accounts for the additional free-energy change. Specifically, it includes any
combinatorial and any elastic free-energy contributions not accounted by the Vbe

−βεAB term. Hence, the resulting
cluster size distribution is

Nc(n) = NNL(n) +NL(n) (20)

=
V

Vref
D(n, f)

(
e−βFbond(Vref,T )

)n−1 (
1 + g(n, β)e−βFbond(Vref,T )

)
zn,

where g(n, β) can be evaluated by calculating the ratio between the number of clusters of size n with and without
loops, NL(n)/NNL(n).

Note that, at low T , when all bonds are formed, g(n, β)e−βFbond(Vref,T ) � 1 and only the contribution from the
clusters with a loop to the partition function survives and

Qn =
V

Vref
D(n, f)

(
e−βFbond(Vref,T )

)n
g(n, β) (21)

and

Nc(n) =
V

Vref
D(n, f) g(n, β)

(
ze−βFbond(Vref,T )

)n
. (22)

This time

Nc(1) =
V

Vref
g(1, β)

(
ze−βFbond(Vref,T )

)
, (23)

so that

ze−βFbond(Vref,T ) =
ρ1

g(1, β)
, (24)

where ρ1 is the monomer’s (unbonded particles) density when the volume is measured in units of Vref, and

Nc(n) = D(n, f) g(n, β)

(
ρ1

g(1, β)

)n
, (25)

which, neglecting the weak dependence on T of g(1, β), does not depend on T any longer. The cluster size distribution
has reached its “ground state” limit.
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E. DLS data fitting

Fig. S3 compares the experimental data for the autocorrelation functions g1(t) with the fit performed using the
double stretched exponential function of Eq. (13) in the main document at high (a), intermediate (b), and low
temperatures (c). In panel d, we compare the fit using a simple exponential function with the experimental data and
the double stretched exponential fit.
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Figure S3: Panels a-c: Comparison of the experimental data (symbols) and the fit with Eq. (13) in the main
document (full lines) for the autocorrelation functions g1(t) obtained for the three different investigated NS
concentrations at high (a), intermediate (b), and low temperatures (c). Panel d: Comparison between the
experimental data with both the simple exponential and double stretched exponential fits for the sample at
c = 2 mg/ml, T = 10.8◦C (the experimental data and the double stretched exponential fit are the same as the ones
reported in panel c).

F. Hydrodynamic radius from simulations

In Fig. S4, we show the hydrodynamic radius calculated from the simulations for c = 2 mg/ml and c = 20 mg/ml
according to the method described in Ref. [6]. Briefly, for each cluster in the system, we computed the smallest
convex set of points (the convex hull) that encloses the position of the bases of the NSs forming the clusters. Then,
the gyration tensor is calculated using the center of mass of the triangles composing the convex hull. Finally, the
gyration tensor is diagonalized, obtaining the three eigenvalues λ1, λ2, and λ3, which are related to the three semi-axes
{a} of the ellipsoid as ai =

√
3λi. The hydrodynamic radius is evaluated according to

Rh =
2∫∞

0
[(a21 + θ)(a22 + θ)(a23 + θ)]

− 1
2 dθ

. (26)
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As done for the radius of gyration in the main text, we calculated the ensemble average of the hydrodynamic radius
over clusters of same size n and different simulation times.
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Figure S4: Hydrodynamic radii calculated from the simulations for c = 2 mg/ml (black points) and c = 20 mg/ml
(red squares), respectively. Blue solid line and magenta dashed line are the power law fits to the data for n ≤ 5 and
n > 5, respectively.
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