Supporting Information

N-doped carbon-coated ultrasmall Nb₂O₅ nanocomposite with excellent long cyclability for sodium storage

Zhigao Chen, Weimin Chen*, Hongxia Wang, Zhuangwei Xiao, and Faquan Yu*

Key Laboratory for Green Chemical Process of Ministry of Education,

Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology,

Hubei Engineering Research Center for Advanced Fine Chemicals,

School of Chemical Engineering and Pharmacy,

Wuhan Institute of Technology, Wuhan 430205, (P.R. China)

Corresponding author:

Email: fyu@wit.edu.cn

wmchen@wit.edu.cn.

Figure S1. SEM images of 600-Nb₂O₅@NC-2.

Figure S2. Pore size distribution of (a) 600-Nb₂O₅@C, (b) 600-Nb₂O₅@NC-10, (c) 600-Nb₂O₅@NC-5, (d) 600-Nb₂O₅@NC-2.5, (e) 600-Nb₂O₅@NC-2 and (f) 600-Nb₂O₅@NC-1.

Figure S3. (a) XPS survey spectrum of the Synthetic composites of Nb₂O₅@NC and Nb₂O₅@C, (b) XPS survey spectrum of 600-Nb₂O₅@NC-2, High-resolution XPS N1s spectra of (c) 600-Nb₂O₅@NC-1, (d) 600-Nb₂O₅@NC-2.5, (e) 600-Nb₂O₅@NC-5 and (f) 600-Nb₂O₅@NC-10.

Figure S4. Exploring experiments on the effects of temperature (550-800 $^{\circ}$ C) and PVA addition (1.5-2.5 g) on cycling performance of (a) and (d) at a current density of 0.1 A g⁻¹, (b) and (e) at a current density of 1 A g⁻¹, (c) and (f) at various current densities.

Figure S5. Cycling performances of (a) 600-Nb₂O₅ and (b) 600-Nb₂O₅@C at a current density of 0.1 A g^{-1} .

Figure S6. Cycling performances of (a) $600-Nb_2O_5$, (b) $600-Nb_2O_5@C$, (c) $600-Nb_2O_5@NC-10$, (d) $600-Nb_2O_5@NC-5$, (e) $600-Nb_2O_5@NC-2.5$, (f) $600-Nb_2O_5@NC-2$ and (g) $600-Nb_2O_5@NC-1$ at a current density of 1.0 A g^{-1} .

Figure S7. Comparisons between the rate performances of this work and other reported Nb_2O_5 -based SIB anodes.

Figure S8. Cyclic voltammetry curves of (a) -Nb₂O₅ and (b) 600-Nb₂O₅@C at scan rates of 0.1 mV s⁻¹ in the voltage range of 0.01–3 V.

Figure S9. CV curves at various scan rates (*v*) from 0.2 to 10 mV s⁻¹ for (a) 600-Nb₂O₅@C, (c) 600-Nb₂O₅@NC-10, (e) 600-Nb₂O₅@NC-5, (g) 600-Nb₂O₅@NC-2.5, (i) 600-Nb₂O₅@NC-2 and (k) 600-Nb₂O₅@NC-1. Relationship between the peak current and the scan rate (the log (*v*)-log (*i*) profiles) of (b) 600-Nb₂O₅@C, (d) 600-Nb₂O₅@NC-10, (f) 600-Nb₂O₅@NC-5, (h) 600-Nb₂O₅@NC-2.5, (j) 600-Nb₂O₅@NC-2 and (l) 600-Nb₂O₅@NC-1.

Figure S10. Contribution ratio of the capacitive and diffusion-controlled capacity versus scan rate of (a) 600-Nb₂O₅@C, (b) 600-Nb₂O₅@NC-10, (c) 600-Nb₂O₅@NC-5, (d) 600-Nb₂O₅@NC-2.5, (e) 600-Nb₂O₅@NC-2 and (f) 600-Nb₂O₅@NC-1.

Figure S11. The Nyquist plots of (a) -Nb₂O₅ and (b) 600-Nb₂O₅@C electrodes before and after 5th, 50th, 100th cycles at a current density of 0.1 A g⁻¹ with equivalent circuit inset.

Types of materials	Raman shift(cm ⁻¹)	ratio	
	D Bond: 1354.12		
$600-Nb_2O_5(a)NC-1$	G Bond: 1586.96	$I_{\rm D}/I_{\rm G} = 0.93$	
600-Nb ₂ O ₅ @NC-2	D Bond: 1357.75	1 /1 0.01	
	G Bond: 1588.29	$I_{\rm D}/I_{\rm G} = 0.91$	
600-Nb ₂ O ₅ @NC-2.5	D Bond: 1360.97	X (X 0.00	
	G Bond: 1586.35	$I_{\rm D}/I_{\rm G} = 0.88$	
600-Nb ₂ O ₅ @NC-5	D Bond: 1349.47	X (X 0.07	
	G Bond: 1586.24	$I_{\rm D}/I_{\rm G} = 0.8/$	
600-Nb ₂ O ₅ @NC-10	D Bond: 1346.66	L /L _0.96	
	G Bond: 1585.02	$I_{\rm D}/I_{\rm G} = 0.80$	
600-Nb ₂ O ₅ @C	D Bond: 1351.55	I_ /I_ = -0.86	
	G Bond: 1592.81	1 _D /1 _G -0.80	

Table S1. D-band and G-band ratios in Raman spectroscopy of composite materials

 Table S2.
 Brunauer-Emmett-Teller (BET) specific surface area and pore-size distribution of composite materials

Types of materials	Surface Area(m ² /g)	Average pore diameter(nm)		
600-Nb ₂ O ₅ @C	182.69	4.14		
600-Nb ₂ O ₅ @NC-10	190.67	4.53		
600-Nb ₂ O ₅ @NC-5	180.95	4.31		
600-Nb ₂ O ₅ @NC-2.5	130.27	4.17		
600-Nb ₂ O ₅ @NC-2	136.67	4.98		
600-Nb ₂ O ₅ @NC-1	60.75	5.32		

Table S3. The chemical composition in atomic of nitrogen concentration derived from XPS peaksof600-Nb2O5@NC-1,600-Nb2O5@NC-2,600-Nb2O5@NC-2.5,600-Nb2O5@NC-5and600-Nb2O5@NC-10, respectively.

Types of materials	N(%)	Pyridinic	Pyrrolic N(%)	Graphitic
		N(%)		N(%)
600-Nb ₂ O ₅ @NC-1	5.72	26.83	59.85	13.32
600-Nb ₂ O ₅ @NC-2	5.17	31.06	65.98	2.96
600-Nb ₂ O ₅ @NC-2.5	4.48	19.34	56.82	23.84
600-Nb ₂ O ₅ @NC-5	3.88	22.30	63.90	13.71
600-Nb ₂ O ₅ @NC-10	3.37	30.87	57.61	11.52

Electrode material name	Specific capacity at low rate	Specific capacity at high rate	Max cycle number	References
Nb ₂ O ₅ @3D PRS	271 mAh g^{-1} at 0.5 C	130 mAh g ⁻¹ at 10 C	7500	[1]
S-Nb ₂ O ₅ HNS@S-rGO	$215 \text{ mAh g}^{-1} \text{ at } 0.5 \text{ C}$	$100 \text{ mAh g}^{-1} \text{ at } 20 \text{ C}$	3000	[2]
a-H-Nb ₂ O ₅	$185 \text{ mAh g}^{-1} \text{ at } 0.2 \text{ C}$	109 mAh g^{-1} at 5 C	3000	[3]
G-Nb ₂ O ₅ nanosheets	230 mAh g^{-1} at 0.25 C	$100 \text{ mAh g}^{-1} \text{ at } 20 \text{ C}$	1000	[4]
m-Nb ₂ O ₅ -C		$175 \text{ mAh g}^{-1} \text{ at } 0.5 \text{ C}$	300	[5]
T-Nb ₂ O ₅ / NCFs	196.8 mAh g^{-1} at 1 C	97 mAh g^{-1} at 40 C	5000	[6]
Nb ₂ O ₅ NCs/rGO	$242 \text{ mAh g}^{-1} \text{ at } 1 \text{ C}$	$60 \text{ mAh g}^{-1} \text{ at } 50 \text{ C}$	5000	[7]
600-Nb ₂ O ₅ @ NC-2	$280 \text{ mAhg}^{-1} \text{ at } 0.5 \text{ C}$	95.9 mAhg ⁻¹ at 50 C	3000	This work

Table S4. Comparison of Nb_2O_5 -based anodes in sodium-ion batteries

Sample	600-Nb ₂ O ₅		600-Nb ₂ O ₅ @C		600-Nb ₂ O ₅ @NC-2	
	Rs (Ω)	Ret (Ω)	Rs (Ω)	$\operatorname{Ret}\left(\Omega\right)$	Rs (Ω)	Rct (Ω)
Before cycle	8.7	202.6	4	205.6	3.6	242.3
5th cycle	8.4	263.7	3.7	168.2	4.7	198.6
50th cycle	8.6	425.8	4.6	251.3	5.7	140.2
100th cycle	7.5	585.4	4.9	332.5	3.9	129.6

Table S5. Fitting results of the data in Figure S10 with the simulated impedance parameters (*Rs*, *Rct*) obtained from the proposed equivalent circuit before and after 5^{th} , 50^{th} , 100^{th} cycles of 600-Nb₂O₅, 600-Nb₂O₅@C and 600-Nb₂O₅@NC-2 anodes at a current density of 0.1 A g⁻¹

Reference

- H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu and Y. Yu, *Nano Energy*, 2018, 48, 448-455.
- F. F. Liu, X. L. Cheng, R. Xu, Y. Wu, Y. Jiang and Y. Yu, *Adv. Funct. Mater.*, 2018, 28, 1800394.
- J. F. Ni, W. C. Wang, C. Wu, H. C. Liang, J. Maier, Y. Yu and L. Li, *Adv. Mater.*, 2017, 29, 1605607.
- 4. L. Wang, X. F. Bi and S. B. Yang, Adv. Mater., 2016, 28, 7672-7679.
- H. Kim, E. Lim, C. Jo, G. Yoon, J. Hwang, S. Jeong, J. Lee and K. Kang, *Nano Energy*, 2015, 16, 62-70.
- L. P. Yang, Y. E. Zhu, J. Sheng, F. Li, B. Tang, Y. Zhang and Z. Zhou, *small*, 2017, 13, 1702588.
- L. T. Yan, G. Chen, S. Sarker, S. Richins, H. Q. Wang, W. C. Xu, X. H. Rui and H. M. Luo, ACS Appl. Mater. Interfaces, 2016, 8, 22213-22219.