Near-Infrared Light-Mediated Antimicrobial Based on $Ag/Ti_3C_2T_x$ for Effective Synergetic Antibacterial Application

Xiaoquan Zhu, ‡^a Yingnan Zhu, ‡^b Jia Ke,^b Bahreselam Sielu Abraha,^a Yang Li,^a Wenchao Peng,^a Fengbao Zhang,^a Xiaobin Fan^{*a} and Lei Zhang^{*b}

^a School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering,
Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin
300072, People's Republic of China.

^b School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300072, People's Republic of China.

‡These authors contributed equally to this work

*E-mail: xiaobinfan@tju.edu.cn; lei_zhang@tju.edu.cn

2θ (°)	cosθ	β(rad)	D (nm)	D (nm)
38.127	0.945	0.00651	23.621	
44.307	0.926	0.00782	20.070	22.910
64.475	0.846	0.00795	21.590	22.810
77.390	0.780	0.00717	25.960	

Table S1. Value of 2 θ and β from the XRD pattern of Ag/Ti_3C_2T_x.

Scherrer Equation: $D = k \cdot \lambda / (\beta \cdot \cos \theta)$. k = 0.943, $\lambda = 0.154$ nm

Figure S1. Photographs of bacterial colonies formed without NIR irradiation after incubation with different concentrations of Ag/Ti₃C₂T_x (1:1), Ag/Ti₃C₂T_x (5:1) and Ag/Ti₃C₂T_x (10:1).

Figure S2. High-resolution XPS spectra of (a) Ti 2p and (b) C1s of Ag/Ti₃C₂T_x composites and $Ti_3C_2T_x$.

Figure S3. (a) the SEM image of $Ag/Ti_3C_2T_x$ composite, element mapping images for (b) Ag, (c) Ti and (d) C. (e) EDS spectrum of $Ag/Ti_3C_2T_x$ composite.

Figure S4. Temperature evolution curves of suspensions containing different concentrations of Ag NPs.

Figure S5. Bacterial growth curves of *S. aureus* after incubating with different concentrations of (a) Ag, (b) $Ti_3C_2T_x$ and (c) Ag/ $Ti_3C_2T_x$ without NIR irradiation; and (d) Ag, (e) $Ti_3C_2T_x$ and (f) Ag/ $Ti_3C_2T_x$ with NIR irradiation.

Table S2 Comparison of some nanomaterial with the photothermal effect for antibacterial

Ref.	-	5	б	4	S	9	7	8	6	10	11	This work
Cell viability	%06~	87%	60-80%	~85%	~80%	20-80%	$\sim 10\%$	/	~80%	~80%	~75%	>82%
Cell type	NIH/3T3 cells	CHO-K1 cells	mouse splenocytes	HUVECs	HepG2 cells, BRL-3A and BV2 cells	L929 cells	HUVECs	/	MGC 803 cells	NIH 3T3 cells	SW620 cells and MH-S cells	NIH 3T3 cells
Antibacterial activity	~100%	%66	%06-08	97% / 100%	%06	>00%	0%/6/%66	91.01% /97.57%	~100%	96.8%/95.2%	$\sim 100\%$	${\sim}100\%$
Bacterial concentration	2-3×10 ⁸	10^{6} - 10^{7}	2×10 ⁴	1.0×10^{5}	106–107	$2 imes 10^5$	/	1×10^{6}	/	105	10 ⁸	10 ⁸
bacteria	S. aureus/ E. coli	S. aureus/ E. coli	S. aureus / E. coli	B. subtilis É. coli	S. aureus/ E. coli	S. aureus/ E. coli	S. aureus/ E. coli	E. coli/ S. aureus	E. coli	E. coli / S. aureus	E. coli	E. coli/ S. aureus
Nanomaterial concentration	0.1 mg/ml	0.8mg/ml	0.1-0.2 mg/ml	0.15 mg/ml	0.2 mg/ml	0.25-0.5 mg/ml	2 mg/ml	0.12-0.14 mg/ml	0.1 mg/ml	0.2 mg/ml	15 µg/ml	0.2 mg/ml
NIR laser	808 nm, 0.75 W/cm ² , 10 min	808 nm, 1.5 W/cm ^{2,} 10min	470 nm 1 W/cm ^{2,} 15min	808 nm 1.0 W/cm ² , 10min	808 nm 2 W/cm ² , 10min	808 nm, 1W/cm ² , 5min	$808 \text{ nm}, 0.5 \text{ W/cm}^2,$	808 nm 2 W/cm ² , 3min	808 nm, 1.0 W/cm ² , 8 min	808 nm, 1.0 W/cm ² , 10min	808 nm, 0.3 W/cm ² , 10min	808 nm, 1.5 W/cm ² , 15 min
Antibacterial mechanism	TTY	TT4	TTq	TT	PTT	PTT, Ag^+	PTT, Ag ⁺	PTT, PDT	PTT, Ag^+	PTT, peroxidative catalyzation	PTT, Ag^+	PTT, Ag ⁺

Nanomaterials	GO	GO	Graphene quantum dots	Nano-MoS ₂	MoS ₂	Au-Ag@SiO ₂ NCs	MoO ₃ -x-Ag	$\operatorname{Au}@\operatorname{Bi}_2S_3$	PEG-Au@Ag	PDA@Au- HAp	RGO/Ag	$Ag/Ti_3C_2T_x$
---------------	----	----	-----------------------------	-----------------------	------------------	-------------------------------	------------------------	--	-----------	----------------	--------	-----------------

Figure S6. Photographs of *E.coli* bacterial colonies formed (a) without treatment, (b) with only NIR light irradiation.

Figure S7. (a) The water content and (b) Compressive stress-strain curves of Ag, $Ti_3C_2T_x$ and Ag/ $Ti_3C_2T_x$ embedded hydrogels

Figure S8. The SEM images of $Ag/Ti_3C_2T_x$ hydrogel and element mapping images for (b) C, (c) N, (d) O, (e) Ag and (f) Ti.

Figure S9. The morphology and size of $Ag/Ti_3C_2T_x$ hydrogel (a) before immersion and immersed in (b) PBS, (c) acid solution (pH=2.5) and (d)basic solution (pH=12).

Figure S10. The morphology and size of $Ag/Ti_3C_2T_x$ hydrogel after dehydrated in alcohol and rehydrated in water.

Figure S11. The water content change of $Ag/Ti_3C_2T_x$ hydrogel in 7 days in the air.

References

- 1. W. Qian, C. Yan, D. He, X. Yu, L. Yuan, M. Liu, G. Luo and J. Deng, Acta Biomater., 2018, 69, 256-264.
- 2. M. C. Wu, A. R. Deokar, J. H. Liao, P. Y. Shih and Y. C. Ling, ACS Nano, 2013, 7, 1281-1290.
- B. Z. Ristic, M. M. Milenkovic, I. R. Dakic, B. M. Todorovic-Markovic, M. S. Milosavljevic, M. D. Budimir, V.
 G. Paunovic, M. D. Dramicanin, Z. M. Markovic and V. S. Trajkovic, *Biomaterials*, 2014, 35, 4428-4435.
- 4. W. Yin, J. Yu, F. Lv, L. Yan, L. R. Zheng, Z. Gu and Y. Zhao, *ACS Nano*, 2016, 10, 11000-11011.
- W. Zhang, S. Shi, Y. Wang, S. Yu, W. Zhu, X. Zhang, D. Zhang, B. Yang, X. Wang and J. Wang, *Nanoscale*, 2016, 8, 11642-11648.
- S. Wu, A. Li, X. Zhao, C. Zhang, B. Yu, N. Zhao and F. J. Xu, ACS Appl. Mater. Interfaces, 2019, 11, 17177-17183.
- 7. Q. Yin, L. Tan, Q. Lang, X. Ke, L. Bai, K. Guo, R. Qiao and S. Bai, *Appl. Catal. B-Environ.*, 2018, 224, 671-680.
- W. N. Wang, P. Pei, Z. Y. Chu, B. J. Chen, H. S. Qian, Z. B. Zha, W. Zhou, T. Liu, M. Shao and H. Wang, *Chem. Eng. J.*, 2020, 397, 125488.
- Y. Peng, Y. Liu, X. Lu, S. Wang, M. Chen, W. Huang, Z. Wu, G. Lu and L. Nie, J. Mater. Chem. B, 2018, 6, 2813-2820.
- 10. X. Xu, X. Liu, L. Tan, Z. Cui, X. Yang, S. Zhu, Z. Li, X. Yuan, Y. Zheng, K. W. K. Yeung, P. K. Chu and S. Wu,

Acta Biomater., 2018, 77, 352-364.

11. S. Tan, X. Wu, Y. Xing, S. Lilak, M. Wu and J. X. Zhao, *Colloid Surf. B-Biointerfaces*, 2020, 185, 110616.