Electronic Supplementary Information

Sensitively switchable visible/infrared multispectral detection and

imaging based on tandem perovskite device

Jiaxin Liu,^{+a} Yousheng Zou,^{+a} Bo Huang,^a Yu Gu,^a Yan Yang,^a Zeyao Han,^a Yuanzhou Zhang,^a Xiaobao Xu^{*a} and Haibo Zeng^{*a}

Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China

⁺These authors contributed equally Corresponding E-mail: xiaobaoxu@njust.edu.cn (X. X) zeng.haibo@njust.edu.cn (H, Z)

Figure S1. The schematic diagram of type-II superlattices multicolor photodetectors with three electrical contacts.^{1, 2}

Figure S2. The photoluminescence (PL) spectrum of $MAPbI_3$ and $MA_{0.5}FA_{0.5}Pb_{0.5}Sn_{0.5}I_3$ films.

Figure S3. The cross-sectional SEM images of MAPbI₃- and MA_{0.5}FA_{0.5}Pb_{0.5}Sn_{0.5}I₃- based single-spectral PDs.

Figure S4. The responsivity curves of MAPbI₃ and $MA_{0.5}FA_{0.5}Pb_{0.5}Sn_{0.5}I_3$ PDs.

Figure S5. The EQE curves of $MAPbI_3$ and $MA_{0.5}FA_{0.5}Pb_{0.5}Sn_{0.5}I_3$ PDs.

Figure S6. The *I*–*V* characteristics of MAPbI₃ and MA_{0.5}FA_{0.5}Pb_{0.5}Sn_{0.5}I₃ PDs under 1 sun illumination (100 mW cm⁻², AM 1.5) and in dark.

Figure S7. The dark current (a) and the calculated noise current (b) of MAPbI₃ and $MA_{0.5}FA_{0.5}Pb_{0.5}Sn_{0.5}I_3$ PDs.

Figure S8. The NEP curves of $MAPbI_3$ and $MA_{0.5}FA_{0.5}Pb_{0.5}Sn_{0.5}I_3$ PDs.

Figure S9. The linear dynamic range (LDR) of MAPbI₃ and $MA_{0.5}FA_{0.5}Pb_{0.5}Sn_{0.5}I_3$ PDs.

Figure S10. The typical -3 dB point frequency roll-off of MAPbI₃ and $MA_{0.5}FA_{0.5}Pb_{0.5}Sn_{0.5}I_3$ PDs.

Figure S11. The absorption spectra of $MAPbI_3$ with spin coating speed of 5500, 6000, 6500, 7000 rpm.

Figure S12. The normalized absorption spectra of MAPbI₃/MA_{0.5}FA_{0.5}Pb_{0.5}Sn_{0.5}I₃ film

Reference

- 1. R. Rehm, M. Walther, J. Schmitz, F. Rutz, A. Wörl, R. Scheibner and J. Ziegler, *Type-II superlattices: the Fraunhofer perspective*, SPIE, 2010.
- 2. R. Rehm, M. Walther, J. Schmitz, J. Fleissner, J. Ziegler, W. Cabanski and R. Breiter, *Electron. Lett* 2006, **42**, 577-578.