Supporting Information for:

Structural Evolution of CrN Nanocube Electrocatalysts during Nitrogen Reduction Reaction

Zili Ma,^{a,b} Jianhong Chen,^b Dongbao Luo,^{a,c} Thomas Thersleff,^b Richard Dronskowski,^{a,c} and Adam Slabon *^b

^{a.} Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany.

^b Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden.

^c Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, China

* Corresponding author e-mail: adam.slabon@mmk.su.se

Table of Contents:

I. Supplemental Figures

Fig. S1 Calibration curve used for estimation of NH₃ concentration.

Fig. S2 Calibration curve used for estimation of N₂H₄ concentration.

Fig. S3 Photographic of the electrocatalytic device.

Fig. S4 Experimental and simulated powder XRD patterns of Cr_2O_3 microspheres (ICSD 75577).

Fig. S5 STEM images (a, b) of as-prepared CrN NCs and STEM EDX mapping (c) for asprepared CrN NCs.

II. Supplemental Table

 Table S1 Summary of the representative reports on electrocatalytic NRR at ambient conditions.

III. References

I. Supplemental Figures

Fig. S1 Calibration curve used for estimation of NH_3 concentration.

Fig. S3 Photographic of the electrocatalytic device.

Fig. S4 Experimental and simulated powder XRD patterns of Cr₂O₃ microspheres (ICSD 75577).

Fig. S5 STEM images (a, b) of as-prepared CrN NCs and STEM EDX mapping (c) for as-prepared CrN NCs.

II. Supplemental Table

Catalyst	Electrolyte	NH₃ yield	FE(%)	Ref.
CrN nanocubes	0.1 M HCl	31.11 μg h⁻¹ mg _{cat.} ⁻¹	16.64	This work
VN	0.1 M HCl	$8.40 \times 10^{-11} \text{ mol s}^{-1} \text{cm}^{-2}$	2.25	1
mesoporous boron nitride	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	18.2 $\mu g h^{-1} m g_{cat.}^{-1}$	5.5	2
MoN	0.1 M HCl	3.05 × 10 ⁻¹⁰ mol s ⁻¹ cm ⁻²	1.15	3
defect-rich MoS ₂	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	29.28 $\mu g h^{-1} m g_{cat.}^{-1}$	8.34	4
hollow Cr ₂ O ₃ microspheres	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	25.3 μ g h ⁻¹ mg _{cat.} ⁻¹	6.78	5
Cr ₂ N	-	1.40 × 10 ⁻¹¹ mol s ⁻¹ cm ⁻²	0.58	6
Nb ₃ O ₇ (OH)	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	622 $\mu g h^{-1} m g_{cat.}^{-1}$	39.9	7
TiO _x N _y	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	4.1 mg h^{-1} g _{cat.} ⁻¹	9.1	8
np-PdH _{0.43}	0.1 M PBS	20.4 $\mu g h^{-1} m g_{cat.}^{-1}$	43.6	9
3D Rh	0.1 M KOH	$35.58 \ \mu g \ h^{-1} \ m g_{cat.}^{-1}$	0.52	10
Mo-doped W ₁₈ O ₄₉	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	5.3 $\mu g h^{-1} m g_{cat.}^{-1}$	12.1	11
multi-yolk-shell bismuth@porous carbon	0.1 M HCl	28.63 $\mu g h^{-1} m g_{cat.}^{-1}$	10.58	12
α -Fe ₂ O ₃ @mTiO ₂ -400	0.1 M Na ₂ SO ₄	27.2 μ g h ⁻¹ mg _{cat.} ⁻¹	13.3	13
Ti ₃ C ₂ T _x QDs	0.1 M HCl	62.94 $\mu g h^{-1} m g_{cat.}^{-1}$	13.30	14
amorphous FeB ₂ porous nanosheets	0.5 M LiCO ₄	39.8 $\mu g h^{-1} m g_{cat.}^{-1}$	16.7	15
Cu-TiO ₂	0.5 M LiCO ₄	21.31 $\mu g h^{-1} m g_{cat.}^{-1}$	21.99	16
Co-SAs/NC	$0.005 \text{ M} \text{ H}_2\text{SO}_4$	16.9 $\mu g h^{-1} m g_{cat.}^{-1}$	18.8	17
CoS ₂ @NC	0.1 M HCl	17.45 $\mu g h^{-1} m g_{cat.}^{-1}$	4.6	18
MV-MoN@NC	0.1 M HCl	76.9 μ g h ⁻¹ mg _{cat.} ⁻¹	6.9	19

Table S1 Summary of the representative reports on electrocatalytic NRR at ambient conditions.

III. References

- 1 R. Zhang, Y. Zhang, X. Ren, G. Cui, A. M. Asiri, B. Zheng and X. Sun, *ACS Sustain. Chem. Eng.*, 2018, **6**, 9545–9549.
- 2 J. Zhao, X. Ren, X. Li, D. Fan, X. Sun, H. Ma, Q. Wei and D. Wu, *Nanoscale*, 2019, **11**, 4231–4235.
- 3 L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, *ACS Sustain. Chem. Eng.*, 2018, **6**, 9550–9554.
- 4 X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Energy Mater.*, 2018, **8**, 1801357.
- 5 Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li and X. Sun, ACS Catal.,

2018, **8**, 8540–8544.

- 6 J. Nash, X. Yang, J. Anibal, M. Dunwell, S. Yao, K. Attenkofer, J. G. Chen, Y. Yan and B. Xu, *J. Phys. Chem. C*, 2019, **123**, 23967–23975.
- 7 T. Wu, M. Han, X. Zhu, G. Wang, Y. Zhang, H. Zhang and H. Zhao, *J. Mater. Chem. A*, 2019, **7**, 16969–16978.
- 8 S. Kang, J. Wang, S. Zhang, C. Zhao, G. Wang, W. Cai and H. Zhang, *Electrochem. Commun.*, 2019, **100**, 90–95.
- 9 W. Xu, G. Fan, J. Chen, J. Li, L. Zhang, S. Zhu, X. Su, F. Cheng and J. Chen, *Angew. Chem. Int. Ed.*, 2020, **59**, 3511–3516.
- 10 T. Chen, S. Liu, H. Ying, Z. Li and J. Hao, *Chem. An Asian J.*, 2020, **15**, 1081–1087.
- 11 M. Yang, R. Huo, H. Shen, Q. Xia, J. Qiu, A. W. Robertson, X. Li and Z. Sun, *ACS Sustain. Chem. Eng.*, 2020, **8**, 2957–2963.
- 12 Y. Qiu, S. Zhao, M. Qin, J. Diao, S. Liu, L. Dai, W. Zhang and X. Guo, *Inorg. Chem. Front.*, 2020, **7**, 2006–2016.
- 13 W. Qiu, Y. Luo, R. Liang and J. Qiu, *Chem. A Eur. J.*, 2020, **26**, 10226-10229.
- 14 Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang, Y. Han, Y. Niu, Y. Wu, C. Sun and Y. Xu, *Adv. Energy Mater.*, 2020, **10**, 2000797.
- 15 K. Chu, W. Gu, Q. Li, Y. Liu, Y. Tian and W. Liu, *J. Energy Chem.*, 2021, **53**, 82–89.
- 16 T. Wu, H. Zhao, X. Zhu, Z. Xing, Q. Liu, T. Liu, S. Gao, S. Lu, G. Chen, A. M. Asiri, Y. Zhang and X. Sun, *Adv. Mater.*, 2020, **32**, 2000299.
- 17 S. Zhang, Q. Jiang, T. Shi, Q. Sun, Y. Ye, Y. Lin, L. R. Zheng, G. Wang, C. Liang, H. Zhang and H. Zhao, ACS Appl. Energy Mater., 2020, **3**, 6079–6086.
- 18 P. Wei, H. Xie, X. Zhu, R. Zhao, L. Ji, X. Tong, Y. Luo, G. Cui, Z. Wang and X. Sun, *ACS Sustain. Chem. Eng.*, 2020, **8**, 29–33.
- 19 X. Yang, F. Ling, J. Su, X. Zi, H. Zhang, H. Zhang, J. Li, M. Zhou and Y. Wang, *Appl. Catal. B Environ.*, 2020, **264**, 118477.