Electronic Supplementary Information

Prediction of topological nontrivial semimetals and pressureinduced Lifshitz transition in 1T'-MoS₂ layered bulk polytypes

Zhiying Guo, ^a Xingyu Hao, ^{a, b} Juncai Dong, ^a Haijing Li, ^{a, b} Yu Gong, ^a Dongliang Yang, ^a Jiangwen Liao, ^{a, b} Shengqi Chu, ^a Yanchun Li, ^a Xiaodong Li ^a and Dongliang Chen*^a

In the stacking process of 1T' monolayer, there are translational and rotational degrees of freedom between the two layers. Rotate the upper layer of 2M-MoS₂ 180 degrees around the b axis and then translate it can reproduce the bottom layer. For the β -MoS₂, rotate 180 degrees of the upper layer around a-axis followed by translation can reproduce the second layer. The following table list the four configurations labeled by 2M, 1T', β , and T_d-MoS₂.

Side view	\checkmark							
Top view								
Rotation Translation	{0 0}	1T'-MoS ₂ Monolayer						
	2M-C2/m	1T ' -P2 ₁ /m	β-P2 ₁ /m	T _d -Pnm2 ₁				
Side view								
Top view								
$\label{eq:Rotation} Rotation \\ Translation \\ \{R t_a t_b t_c\}$	{R _b : π 0.5 0 0}	{0 0}	$\{R_a: \pi \mid 0 \ 0 \ 0.5\}$	{R _b : π 0 0.5 0.5}				
Symmetry	spoil screw symmetry of monolayer	maintain scre mon	break inversion					

Figure S1. 1T'-monolayer of MoS_2 and layered bulk structures through lateral rotation and

translation between layers. Red and green represent the top and bottom layer of the bilayer, respectively.

Phase	Space Group	Lattice Parameter (Å)	Atom	Wyckoff Position	Atomic Coordinates		
					Х	Y	Z
2M	C2/m	a= 12.9285	Мо	4i	-0.2429	0	0.2942
		b= 3.1759	S1	4i	-0.8613	0	0.1809
		c= 5.7199	S2	4i	-0.6045	0	0.2882
		α=γ=90° β=66.09°					
1T'	P2₁/m	a= 5.7250	Мо	2e	0.6996	0.75	0.5103
		b=3.1847	S1	2e	0.4108	0.75	0.2145
		c=5.9526	S2	2e	0.9205	0.25	0.2766
		α=γ=90° β=90.46°					
β	P2₁/m	a= 5.7142	Mo1	2e	0.7022	0.25	0.5052
		b=3.1730	Mo2	2e	0.3013	0.25	0.0058
		c=12.3213	S1	2e	0.3569	0.25	0.3589
		α=γ=90°	S2	2e	0.1220	0.25	0.6104
		β=100.80°	S 3	2e	0.5243	0.25	0.8591
			S4	2e	0.9655	0.25	0.1105
T _d	Pmn2 ₁	a=3.1752	Mo1	2a	0	0.1034	0
		b=5.7178	Mo2	2a	0	0.4978	0.5132
		c=11.9241	S1	2a	0	0.3822	0.1506
		α=β=γ=90°	S2	2a	0	0.1182	0.6171
			S 3	2a	0	0.7789	0.3624
			S4	2a	0	0.7239	0.8961

Table S1. Relaxed four bulk polytypes of MoS_2 at ambient pressure without the inclusion of SOC.

Figure S2. The enthalpy curves (relative to bulk $1T'-P2_1/m$) for various bulk structures in the pressure range of 0-30GPa.

Figure S3. Calculated phonon dispersion of (a) $2M-MoS_2$ and (b) $\beta-MoS_2$. AIMD simulation for (c) $2M-MoS_2$ and (d) $\beta-MoS_2$ at 300 and 600K.

Figure S4. The band structures of 2M-MoS₂ calculated within GGA (black lines) and hybrid functional HSE06 (red circled lines).

The electronic fillings of bulk 1T'-MoS2 with a nonsymmorphic space group of 11 fulfill the filling constraints for the gapless system. The gapless point is located at the high symmetry path of Γ-Z as shown in Fig. S5(a), which is topological protected by the screw symmetry of Sy. In fact, the shape of the band structure (marked in blue) can be seen as a distorted hourglass, thus it is analogous to the spinless hourglass nodal-line semimetals. Similar to the case in 2M-MoS2, the coexistence of open and closed type nodal lines is found in the bulk 1T'-MoS2(see Fig.S5(b)). A drumhead-like surface state surrounded by the closed nodal loop near B point appears on the (100) surface of 1T'-MoS2 in Fig.S5(c).

In contrast to the 2M- and 1T'-MoS2, the β -MoS2 possesses two pairs of closed nodal loop shown in Fig. S5(d). Interestedly, double drumhead-like surface sates appear inside the overlapped region of NL1 on the (001) surface of β -MoS2 in Fig. S5(e). The isoenergy surfaces with E=0.21eV and 0.46eV are shown in Fig.S5(f) and S5(g). It should be noted that this drumhead-like surface sates are nearly flat and cover a larger part of BZ, partially fulfilling the aforementioned characteristics of good candidates.

Figure S5. (a) calculated energy band for bulk 1T'-MoS2 and a typical hourglass energy band in nodal line semimetal. (b) calculated band touching points (nodal line) in 3D k space of bulk 1T'-MoS2. (c) calculated surface state on the (100) surface of bulk 1T'-MoS2. (d) nodal line in β -MoS2. (e) surface state and (f) (g) isoenergy surface on the (001) surface of β -MoS2 with E=0.21eV and 0.46eV.

Figure S6. The pressure effect on layered materials and the inherent correlation between structure distortion and electronic topological transition (ETT) or Lifshitz transition.