Supporting Information

Rapid Production of Multiple Transition Metal Carbides via Microwave Combustion under Ambient Conditions

Huiyu Jiang, \ddagger^a Junfeng Li, \ddagger^a Zhiheng Xiao,^b Bo Wang,^c Mingzhao Fan,^a Siqi Xu,^a and Jun Wan^{*a,b}

^aHubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing, Wuhan Textile University, Wuhan 430200, Hubei, China.

^bState Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, Hubei, China.

^cSchool of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023, Henan, China.

‡ These authors contributed equally to the work.

*Correspondence author: wanj@wtu.edu.cn

Figure S1. A series of photographs showing the sample during flash ignition with the time interval labeled in two seconds.

Figure S2. XRD patterns of intermediate reaction condition samples. (a) XRD pattern of the precursor of WO₃/GO composite after microwave treating for 30 s. (b) XRD patterns of V₂O₅/GO composites after microwave treating for 30 s and 60 s. (c) XRD pattern of Nb₂O₅/GO composite after microwave treating for 90 s. (d) XRD patterns of Ta₂O₅/GO composites after microwave treating for 30 s and 90 s.

Figure S3. (a) XPS survey spectra and (b) C 1s peaks of the W₂C-90s sample.

Figure S4. (a) XPS survey spectra and (b) C 1s peaks of the VC-120s sample.

Figure S5. (a) XPS survey spectra and (b) C 1s peaks of the NbC-120s sample.

Figure S6. (a) XPS survey spectra and (b) C 1s peaks of the TaC-140s sample.

Figure S7. (a) XRD patterns of the pre-synthesis and completed reaction condition samples. (b) XPS survey spectra. (c) Core level Fe 2p XPS spectra and (d) C 1s peaks of the Fe₃C-120s sample.

Figure S8. EDS elemental mapping scanning of the W₂C-90s sample from TEM.

Figure S9. EDS elemental mapping scanning of the VC-120s sample from TEM.

Figure S10. EDS elemental mapping scanning of the Fe₃C-120s sample from TEM.

Figure S11. EDS elemental mapping scanning of the NbC-120s sample from TEM.

Figure S12. EDS elemental mapping scanning of the TaC-140s sample from TEM.

Figure S13. (a) SEM of the MoO3/GO composite. (b,c) TEM and High-resolution images of the Mo2C-120s sample.

Figure S14. The High-resolution TEM images of the Mo-6s and Mo-100s samples. (a) The reduction process from MoO_3 to MoO_2 . (b) The transition boundary of reduction between two crystalline phases. (c) The carbonization process from MoO_2 to Mo_2C . (d) The transition boundary of carbonization between MoO_2 and Mo_2C phases.

Figure S15. (a) XPS survey spectra and (b) C 1s peaks of the Mo₂C-120s sample.

Figure S16. Nyquist plots of the above carbide electrocatalysts.

Figure S17. The long-term durability test of VC-120s sample at η =102 mV in 0.5 M

 $\mathrm{H}_2\mathrm{SO}_4.$

Catalyst	Loading	Electrolyte	Onset potential	Overpotential at 10 mA cm^{-2}	Tafel slope	Ref.
	(mg cm ⁻²)		(mV vs RHE)	(mV vs RHE)	(mV dec ⁻¹)	56476
W2C/rGO	0.55	0.5 M H ₂ SO ₄	38	120	51	This work.
Mo ₂ C/rGO	0.55	0.5 M H2SO4	45	138	55	This work.
VC/rGO	0.55	0.5 M H2SO4	21	88	56	This work.
⁷ e3C/rGO	0.55	0.5 M H ₂ SO ₄	30	116	68	This work.
NbC/rGO	0.55	0.5 M H2SO4	126	265	112	This work.
ſaC/rGO	0.55	0.5 M H ₂ SO ₄	48	166	93	This work.
W ₂ C/MWNT	0.556	$0.5MH_2SO_4$	50	123	45	Nat. Commun. 2016. 7. 13216
WC NPs	1	$0.5MH_2\!SO_4$	100	125	84	2013, 7, 13210. ChemSusChem 2013, 6, 168
P-W2C@NC	3.5	$0.5~\mathrm{MH_2\!SO_4}$	45	89	53	J. Mater. Chem. A 2017, 5, 765
Fe-WCN	0.4	PH=1 H ₂ SO ₄	~100	220	47.1	Angew. Chem., Int Ec 2013, 52, 13638
a-WC/CB	0.724	$0.5~\mathrm{MH_2\!SO_4}$	<50	260		Angew. Chem., Int Ed
WC-CNTs		0.05 M H ₂ SO ₄	15	145	72	2014, 53, 5131. ACS Nano
						2015, 9, 5125.
Porous WC hin film	0.16	0.5 M H ₂ SO ₄	120	274	67	J. Mater. Chem. A 2015, 3, 5798.
Thin film W_2C		$0.5\ M\ H_2SO_4$		>300	69	J. Am. Chem. Soc
W ₂ C microspheres		$1~\mathrm{MH_2\!SO_4}$	50	~170	118	Int. J. Hydrogen. Ener
Co_6W_6C	0.28	$0.5MH_2SO_4$	26	200	75	Nanoscale
MosC@NPC/NPRGO	0.14	05MH-SO	0	34	33.6	2015, 7, 3130. Nat Commun
nojo (graf ostando	0.11	0.5 11112504		5.	55.0	2016, 7, 11204
Mo ₂ C/NCF	0.28	$0.5MH_2SO_4$	40	144	55	ACS Nano. 2016-10, 11337
2D-N,Co-Mo ₂ C	0.55	0.1 M HClO ₄	25	71	40	Adv. Funct. Mater 2017, 1703933.
Co-Mo ₂ C-0.020	0.14	$0.5MH_2SO_4$	40	= 140	39	Adv. Funct. Mater.
Mo ₂ C/RGO	0.285	$0.5\mathrm{M}\mathrm{H_2SO_4}$	70	130	57.3	2016, 26, 5590. Chem. Commun.
Mo ₂ C/CNT-GR	0.65	0.5 M H ₂ SO ₄	62	130	58	2014, 50, 13135 ACS Nano
						2014, 8, 5164.
Mo ₂ C@NC	0.28	0.5 M H ₂ SO ₄		124	60	Angew. Chem. Int. E 2015, 54, 10752
Mo ₂ C nanotubes	0.75	$0.5MH_2SO_4$	82	172	62	Angew. Chem. Int. Ed
np-Mo ₂ C NWs	0.21	0.5 M H ₂ SO ₄	70	130	53	2015, 54, 15395 Energy Environ. Sc
L. CIONT	20			150	<i>(</i> 5	2014, 7, 387
M02C/CN1	2.0	0.1 M HCI04		152	65	2013, 6, 943.
⁷ e ₃ C-GNRs		$0.5MH_2SO_4$	32	49	46	ACS Nano 2015 9 7407
Fe ₃ C-Mo ₂ C/NC	0.14	$0.5~MH_2SO_4$	42	116	43	ChemSusChem
Fe ₃ C/Mo ₂ C@NPGC	0.14	0.5 M H ₂ SO ₄	18	98	45.2	2017, 10, 2597. J. Mater. Chem. A
				- Second	2010-10	2016, 4, 1202.
VC-NS	0.28	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$		98	56	Nano Energy 2016 26 603
2D TaC-RGO	0.64	$0.5~MH_2SO_4$	19	167	58	Chem. Commun.
NbC100		0.1 M H ₂ SO ₄	>100	470	35 A	2010, 52, 8810. ACS Appl. Mat. Interfac
						2017 0 20972