Multi-dimensional collaboration promotes the catalytic performance

of 1D MoO3 nanorods decorated with 2D NiS nanosheets for efficient

water splitting

Liujun Jin, Hui Xu, Cheng Wang, Yong Wang *, Hongyuan Shang and Yukou Du * College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China

* Corresponding authors: Tel: 86-512-65880089, Fax: 86-512-65880089; E-mail: yowang@suda.edu.cn (Y. Wang); duyk@suda.edu.cn (Y. Du)

Fig. S1 Optical pictures of NF (gray), NiMoO₄/NF (yellow) and NiS/MoO₃/NF (black).

Fig. S2 More detailed SEM images (a, b) and TEM images (c, d) of $NiS/MoO_3/NF$ with different magnifications.

Fig. S3 XRD patterns of NiS/MoO₃/NF, NiMoO₄/NF and NF.

Fig. S4 High-resolution X-ray photoelectron spectra of Ni 2p (a), Mo 3d (b) and O 1s (c)

Fig. S5 The linear sweep voltammetry (LSV) curves of NiS/NF and MoO_3/NF for OER (a) and HER (b) in the alkaline electrolyte of 1.0 M KOH at a scan rate of 5 mV s⁻¹.

Fig. S6 (a) Tafel plots of as-prepared catalysts. (b) Capacitance current as a function of scan rate. (c) Electrochemical impedance spectroscopy plots. (d) Chronopentiometry response of NiS/MoO₃/NF for HER at constant current density of 10 mA cm⁻²

Fig. S7 (a) LSV polarization curve of NiS/MoO₃/NF towards direct water splitting, (b) Chronopotentiometry curve of NiS/MoO₃/NF at a current density of 10 mA cm⁻².

electrocatalysts	η_{10}/η_{50}	Tafel slope	electrolyte	Reference
	(mV)	(mV dec ⁻¹)		
NiS/MoO ₃ /NF	221	70.9	1.0 M KOH	This work
Ni ₃ S _{2/} NF	260	-	1.0 M KOH	1
Ni _x Co _{2x} (OH) _{6x} @Ni	305	78	1.0 M KOH	2
FeOOH/CeO ₂ HLNTs-	230	92.3	1.0 M KOH	3
NF				
Mo-Ni ₃ S ₂ /Ni _x P _y	238	60.6	1.0 M KOH	4
CoCr LDH nanosheets	340	81	1.0 M KOH	5
NiS/NF	335	89	1.0 M KOH	6

Table S1 Comparison of the OER performance of NiS/MoO₃/NF with previous reported non-precious OER electrocatalysts in basic electrolyte.

Table S2 Comparison of the cell voltage for overall water splitting of NiS/MoO₃/NF with previous reported non-precious electrocatalysts at 10 mA cm⁻² water splitting current density in basic electrolyte.

electrocatalysts	Cell voltage (V)	electrolyte	Reference
NiS/MoO ₃ /NF	1.566	1.0 M KOH	This work
Ni ₃ S _{2/} NF	1.64	1.0 M KOH	6
Ni ₃ Se ₂ nanoforest/NF	1.61	1.0 M KOH	7
Ni _{2.5} Co _{0.5} Fe/NF	1.62	1.0 M KOH	8
Ni _x P _y -325	1.57	1.0 M KOH	8
Ni/NiP	1.61	1.0 M KOH	9
Ni-P foam	1.64	1.0 M KOH	10

Reference

[1] L. Feng, G. Yu, Y. Wu, G. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zhou, J. Am. Chem. Soc. 2015, 137, 14023-14026. [2] Z. Liu, G. Chen, P. Zhou, N. Li, Y. Su, J. Power Sources 2016, 317, 1-9.

[3] J. Feng, S. Ye, H. Xu, Y. Tong, G. Li, Adv. Mater. 2016, 28, 4698-4703.

[4] X. Luo, P. Ji, P. Wang, R. Cheng, D. Chen, C. Lin, J. Zhang, J. He, Z. Shi, N. Li,

S. Xiao, and S. Mu, Adv. Energy Mater. 2020, 1903891.

[5] C. Dong, X. Yuan, X. Wang, X. Liu, W. Dong, R. Wang, Y. Duan, F. Huang, J. Mater. Chem. A, 2016,4, 11292-11298.

[6] W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Chem. Commun. 2016, 52, 1486--1489.

[7] R. Xu, R. Wu, Y. Shi, J. Zhang, B. Zhang, Nano Energy 2016, 24, 103-110.

[8] X. Zhu, C.Tang, H. Wang, B. Li, Q. Zhang, C. Li, C. Yang, F. Wei, 2016, 4, 7245-7250.

[9] G. Chen, T. Ma, Z. Liu, N. Li, Y. Su, K. Davey, S. Qiao, Adv. Funct. Mater. 2016, 26, 3314-3323.

[10] X. Wang, W. Li, D. Xiong, L. Liu, J. Mater. Chem. A 2016, 4, 5639-5646.