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EXPERIMENTAL SECTION

Chemicals. Antimony trichloride (SbCls, 99.999%), antimony triacetate (Sb(OAc)s;, 99.99%),
hexylphosphonic acid (HPA, 95%), trioctylphosphine oxide (TOPO, 99%), 1-dodecanethiol (1-
DDT, 99.9%), and oleylamine (OLA, 70%) were purchased from Sigma Aldrich. Bismuth
trichloride (BiCls;, 99.99%) and hexadecylphosphonic acid (HDPA, 98%) were purchased from
Macklin, dodecylphosphonic acid (DDA, 98%) was purchased from Aladdin. Cyclohexane,
ethanol, toluene and chloroform were used as received.

Synthesis of antimonene and bismuthene nanosheets.

In a typical reaction batch for synthesizing antimonene nanosheets (Figure 1), Sb
precursors were prepared first. SbCl; (0.137 g, 0.6 mmol) and HDPA (0.721 g, 2.0 mmol)
were loaded into a glass vial at room temperature followed by reacting at 90 °C to get a
colorless Sb precursor solution. 4.5 mL OLA was degassed in a 50 mL three-necked flask at
room temperature for 30 min. Afterwards, the solution was heated up to 270 °C under
nitrogen and Sb precursors solution was swiftly added into the OLA solution with
immediately formation of gray suspension. After 1 min of growth, the heating mantle was
removed to quench the reaction. The as-synthesized samples were quickly extracted from
the reaction flask for further washing when the solution temperature decreased to 120 °C.
For the synthesis of bismuthene nanosheets (Figure 4), Bi precursor was prepared through a
similar way through reacting between BiCl; (0.190 g, 0.6 mmol) and DDA (0.501 g, 2.0 mmol)
at 90 °C.

To wash the samples, we extracted the crude samples and centrifuged at 8000 rpm for
5s. The supernatant was discarded, and the precipitates were dispersed in toluene followed
by sonicating for 5 mins. Afterwards, the solutions were centrifuged at 8500 rpm for 2 min.
We repeated this process for five times to get purified samples. Finally, the samples were
dispersed in toluene for further characterization.

Preparation of Sh-HPA, Sb-TOPO and Sh-DDT precursors: For investigating the lamellar
structure of Sb precursors, we prepared Sb-HPA and Sb-TOPO precursors by reacting SbCls
(0.137 g, 0.6 mmol) with HPA (0.332 g, 2.0 mmol) at 80 °C (Figure 3c), and TOPO (0.773 g,

2.0 mmol) at 50 °C (Figure 3e). Moreover, Sb-DDT was also prepared (Figure S5-2) through
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mixing Sb(OAc); (0.137 g, 0.6 mmol) and 1-DDT (0.50 mL, 2.0 mmol) at 50 °C.
Characterization.

The purified samples were dispersed in toluene and dropped on a carbon coated
copper grid for TEM characterization. Transmission electron microscope (TEM) images and
Energy-dispersive spectroscopy (EDS) measurements were performed on a transmission
electron microscope (JEM-F200, JEOL) with an acceleration voltage of 200 kV. The low-
resolution TEM images in supporting information were collected on a HT7700 transmission
electron microscope.

UV-visible absorption spectra were collected with 1 nm date collection interval by a
SHIMADZU UV-1780 UV-visible spectrophotometer. Powder X-ray diffraction (XRD) patterns
were recorded on an X-ray diffractometer (Ultima IV) with a Cu Ko beam (A = 1.5418 A), the
purified samples were dispersed in cyclohexane and deposited on a silicon substrate for XRD
test. X-ray photoelectron spectroscopy (XPS) measurements were performed using
PHI5000VersaProbell, with the purified antimonene and bismuthine nanosheet samples
dropped on silicon wafer. Raman spectra were collected using a Confocal Raman
Microscope (Alpha300 R, Germany) equipped with a 785 nm laser for antimonene
nanosheets and bulk Sb, and a Confocal Raman Microscope (Horiba LabRAM HR800)

equipped with a 532 nm laser for bismuthene nanosheets and bulk Bi.
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Figure S1. The photograph and XRD pattern of Sb,S; synthesized by employing Sb-DDT as
precursor at 300 °C.
The gray suspension formed accompany with orange precipitates appeared at the inner wall
of the flask after Sb-DDT adding. XRD pattern of the obtained products suggests the
formation of Sb,S;. The formation of Sb,S; by-product is ascribed to the low thermal
decomposition temperature of 1-DDT (~ 200 °C),%? which caused sulfurization of the yielded

monoelemental Sb.
(1) Y. Zhai, M. Shim, Chem. Mater. 2017, 29, 2390-2397;

(2) M. Kruszynska, H. Borchert, A. Bachmatiuk, M. H. Riimmeli, B. Biichner, J. Parisi, J. Kolny-
Olesiak, ACS Nano, 2012, 6, 5889-5896.
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Figure S2-1. The TEM images of antimonene nanosheets synthesized at 250 °C for 1 min (a)

and 230 °C for 20 min (b).
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Figure S2-2. Typical AFM image and corresponding height profiles of synthesized

antimonene nanosheet.
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Figure S2-3. EDS spectrum of the antimonene nanosheets. Here, the 0 wt% of P atom is
attribute to the very trace amount of P atom which is below the detection limit of the

machine.

-Sb 3d

-0 KLL

Counts/Second

-C1ls

1000 800 600 400 200 0
Binding Energy (eV)

Figure S2-4. Wide-scan X-ray photoelectron spectra of the obtained antimonene nanosheets.
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Figure S$2-5. The absorption spectrum of the as-synthesized antimonene nanosheets, the
photograph of antimonene solution dispersed in toluene is shown in the insert.
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Figur

e S3-1. The XRD patterns of the as-synthesized antimonene nanosheets and after storage in

the air.

Figure S3-2. The TEM (a) and high-resolution TEM (b) images of antimonene nanosheets

after storage for one week.
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Figure S3-3. High-resolution XPS results and peak deconvolution of the as-synthesized

antimonene nanosheets after storage for one week.

102

99 +

96 +

Mass Percent (%)

93+

90 . ? ; ' .
100 200 300 400 500 600 700
Temperature (°C)

Figure S3-4. The TGA data of antimonene nanosheets.
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Figure S4-1. The TEM images of the sample extracted from the reaction of Sb-TOPO + OLA at

210 °C, 240 °C, and 270 °C. We consider that the precursor reactivity may change by using
TOPO replaced of PA, thus the reaction was performed at a wide temperature range from

210 °Cto 270 °C. Under all temperature conditions, irregular morphology was formed.
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Figure S4-2. XRD pattern of the synthesized Sb nanocrystals from the reaction of Sb-TOPO +

OLA at 270 °C. The obtained Sb nanocrystals shows a rhombohedral structure without the

formation of Sb,0;.
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Figure S5-1. (a) The small angle XRD pattern of the Sb-HPA precursor and (b) the

corresponding TEM image of antimonene nanosheets synthesized with Sb-HPA.
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Figure S5-2. The small angle XRD pattern of the Sb-DDT precursor. The obviously uniformly-
spaced diffraction peaks confirmed the formation of lamellar structure in Sb-DDT precursor.
In order to get a solid powder for the XRD measurement, Sb(OAc); was used instead of SbCl3

for preparation of Sb-DDT precursor.
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Diffraction Peak Average peak Interlayer Ligand
(26) separation (26)  spacing (A)  length (A)
Sb-HPA 4.04/7.98/12.44 4.2 21.0 10.1
Sb-HDPA 4.2/6.34/8.48/10.6 2.13 41.4 21.8
Sb-TOPO \ \ \ \
Sb-DDT  5.54/8.22/10.3/13.6/16.26 2.68 33.1 16.7

Table S1. Calculation of the interlayer spacing in the lamellar structure and the length of

surface ligand molecule chains.

The interlayer spacing was calculated by d=A/2sin®, where A=1.54 A, 6 is diffraction angle.

The surface ligand length was calculated by an empirical formula, L (hnm) = 0.15 + 0.127n,

where n is the number of carbon atoms in the alkyl chain.3

(3) Evans, D. F.; Wennerstréom, H. The Colloidal Domain: Where Physics, Chemistry and

Biology Meet; Wiley-VCH: Weinheim, 1999.
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Figure S6-1. EDS spectrum of the bismuthene nanosheets. Here, the 0 wt% of P atom is

thanks to the very trace amount of P atom which is below the detection limit of the machine.
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Figure S6-2. Wide-scan X-ray photoelectron spectra of the obtained bismuthene nanosheets.
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Figure S6-3. The absorption spectrum of the as-synthesized bismuthene nanosheets, the
photograph of bismuthene solution dispersed in toluene is shown in the insert.
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Figure S6-4. The XRD patterns of the as-synthesized bismuthene nanosheets and after
storage in the air.

S14



