Spectral shift, electronic coupling and exciton delocalization in nanocrystal dimers: insights from all-atom electronic structure computations

Maurizio Coden, Pietro De Checchi, Barbara Fresch*

Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.

Supporting information

Index

1.	Bei	nchmark of computational protocol	3		
2.	Formal definition of the participation ratio (PR) and charge transfer (CT) indexes				
3.	De	tails on the electronic structure of (Cd13Se13)-PDTC-(Cd13Se13)	9		
	3.1.	Density of states of monomer (Cd ₁₃ Se ₁₃)-PDTC and dimer (Cd ₁₃ Se ₁₃)-PDTC	9		
	3.2.	Simulated spectra of monomer (Cd ₁₃ Se ₁₃)-PDTC and dimer of (Cd ₁₃ Se ₁₃)-PDTC-(Cd ₁₃ Se ₁₃)	9		
	3.3.	Frontier orbitals of monomer (Cd ₁₃ Se ₁₃)-PDTC	10		
	3.4.	Selected Natural Transition Orbitals for (Cd ₁₃ Se ₁₃)-PDTC	11		
	3.5.	Frontier orbitals of dimer (Cd ₁₃ Se ₁₃)-PDTC-(Cd ₁₃ Se ₁₃)	12		
4.	De	tails on the electronic structure of (Cd ₁₃ Se ₁₃)-propanDTC-(Cd ₁₃ Se ₁₃)	14		
	4.1.	Density of states of monomer (Cd ₁₃ Se ₁₃)-propanDTC and dimer of (Cd ₁₃ Se ₁₃)-propanDTC-(Cd ₁₃ Se ₁	. ₃). 14		
	4.2.	simulated spectra of monomer (Cd $_{13}$ Se $_{13}$)-propanDTC and dimer of (Cd $_{13}$ Se $_{13}$)-propanDTC-(Cd $_{13}$ Se	e ₁₃)14		
	4.3.	Natural transition orbitals of monomer (Cd $_{13}$ Se $_{13}$)-propan DTC	15		
	4.4.	Natural transition orbitals of dimer (Cd ₁₃ Se ₁₃)-propanDTC-(Cd ₁₃ Se ₁₃)	16		
5.	Со	mparison between PDTC and propan-DTC	17		
6.	De	tails on the electronic structure of (Cd ₁₃ Se ₁₃)-BTT-(Cd ₁₃ Se ₁₃)	18		
	6.1.	Density of states of monomer (Cd ₁₃ Se ₁₃)-BTT and dimer of (Cd ₁₃ Se ₁₃)-BTT-(Cd ₁₃ Se ₁₃)	18		
	6.2.	Simulated spectra of monomer (Cd ₁₃ Se ₁₃)-BTT and dimer of (Cd ₁₃ Se ₁₃)-BTT-(Cd ₁₃ Se ₁₃)	18		
	6.3.	Natural transition orbitals monomer (Cd ₁₃ Se ₁₃)-BTT	19		
	6.4.	Natural transition orbitals of dimer of $(Cd_{13}Se_{13})$ -BTT- $(Cd_{13}Se_{13})$	20		
7.	De	tails on the electronic structure of (Cd ₁₃ Se ₁₃)-NTT-(Cd ₁₃ Se ₁₃)	22		
	7.1.	Density of states of monomer (Cd ₁₃ Se ₁₃)-NTT and dimer of (Cd ₁₃ Se ₁₃)-NTT-(Cd ₁₃ Se ₁₃)	22		
	7.2.	Simulated spetra of monomer (Cd ₁₃ Se ₁₃)-NTT and dimer of (Cd ₁₃ Se ₁₃)-NTT-(Cd ₁₃ Se ₁₃)	22		
	7.3.	Frontier Orbitals of monomer (Cd ₁₃ Se ₁₃)-NTT	23		
	7.4.	Natural transition orbitals of monomer (Cd ₁₃ Se ₁₃)-NTT	23		

	7.5.	Frontier orbitals of dimer (Cd ₁₃ Se ₁₃)-NTT-(Cd ₁₃ Se ₁₃) 2	4
	7.6.	Natural transition orbitals of dimer (Cd ₁₃ Se ₁₃)-NTT-(Cd ₁₃ Se ₁₃) 2	5
8.	Со	omparison between BTT and NTT 2	.7
9.	De	etails on the electronic structure of $Cd_{17}Se_4(SCH_3)_{26}$ -Py-Py- $Cd_{17}Se_4(SCH_3)_{26}$.8
	9.1.	Density of states of monomer $Cd_{17}Se_4(SCH_3)_{26}$ -Py and dimer $Cd_{17}Se_4(SCH_3)_{26}$ -Py-Py- $Cd_{17}Se_4(SCH_3)_{26}$. 2	.8
	9.2.	Simulated spectra of monomer Cd ₁₇ Se ₄ (SCH ₃) ₂₆ -Py 2	.8
	9.3.	Natural transition orbitals of monomer $Cd_{17}Se_4(SCH_3)_{26}$ -Py2	9
	9.4.	Simulated spectra of dimer Cd ₁₇ Se ₄ (SCH ₃) ₂₆ -Py-Py-Cd ₁₇ Se ₄ (SCH ₃) ₂₆	0
	9.5.	Natural transition orbitals of dimer Cd ₁₇ Se ₄ (SCH ₃) ₂₆ -Py-Py-Cd ₁₇ Se ₄ (SCH ₃) ₂₆	1
10		Structures, distances and coupling 3	3
11		Optimized Coordinates	5
	11.1.	. Cd ₁₃ Se ₁₃ -PDTC-Cd ₁₃ Se ₁₃	5
	11.2.	. $Cd_{13}Se_{13}$ -BTT- $Cd_{13}Se_{13}$	6
	11.3.	. Cd ₁₇ Se ₄ (SCH ₃) ₂₆ -Py-Py- Cd ₁₇ Se ₄ (S CH ₃) ₂₆	7
12		References 4	1

1. Benchmark of computational protocol

To set up a predictive computational protocol we benchmark different functionals against experimental results for a smaller cluster whose composition is very similar to the dimers showed in Figure 1 of the main text. We selected an atomically well-defined CdSe cluster that was experimentally isolated and structurally characterized. The cluster $Cd_{10}Se_4(SePh)_{12}(PPh_3)_4$, hereafter **Cd10**, can be prepared through a selective synthetic route, single crystal structure is available¹ and the absorption spectrum has been characterized.² Importantly for our purpose, it can be modelled at the DFT level without introducing major structural simplification allowing a straightforward comparison of the computed spectra with the experimental one. The structure of **Cd10** is shown in Figure S1 a). Absorption spectra were calculated using TDDFT and CIS (Configuration interaction singles). A total of 120 singlet transitions were included in the excited state calculations to represent absorption spectra up to 4.5-5 eV. The optical transitions were in turn broadened by a Gaussian function with a line width of 80 meV. Figure S1 b) shows the experimental absorption spectrum taken from ref² (black line) compared with the absorption spectra obtained with 7 different hybrid functionals as reported in the legend together with the shift (in eV) of the predicted first band compared to the experimental position. Absolute transition energies are well described by the recent functional from Truhlar group MN15³ (green line) while they are systematically overestimated by long range corrected functionals such as CAMB3LYP and wB97XD. However, because we are interested in relative energies of excited states more than absolute energies, we also compare the calculated absorption profile shifted by the difference in the first transition band (Figure S1 c). In this case, CAMB3LYP gives the best description of the relative intensities of different bands. Corrections in the functional form of the long-range part of the exchange interaction are also expected to better describe high energy excited states, the interactions between the cores separated by the linker and state with charge transfer character.⁴

Figure S1: a) optimized geometry of Cd10. b) Experimental absorption spectrum (black line) and spectra calculated with different functionals as detailed in the legend. Values in parenthesis are the shift in eV of the position of the first band compared to the experimental value. Dashed line is the CIS spectrum. B3LYP, PBE0, HSE06, MN15 are hybrid functionals (which include a mixture of Hartree-Fock exchange with DFT exchange-correlation). CAM-B3LYP, wB97XD and LC-wHPBE are long range corrected hybrid functionals. c) Spectra of three selected functionals as specified in the legend shifted to ease comparison with the experimental spectrum (black).

The effect of the substitution of Phenil (Ph) with metil (Me) groups in a fully covered cluster has been investigated for **Cd10**. Figure S2 shows the comparison between $Cd_{10}Se_4(SePh)_{12}(PPh_3)_4$ (blue) and $Cd_{10}Se_4(SeMe)_{12}(PMe_3)_4$ (red) simulated spectra. In the first band, a slight blue shift can be noticed together with a narrowing of the band moving from phenyl to methyl groups. However, NTOs analysis (shown in Figure S3 for selected transitions) evidences a strong similarity in the nature of the first band transitions. The electron is mainly localized in s-orbital of Cd while p-orbitals of Se provide the major contribution to the hole. In $Cd_{10}Se_4(SePh)_{12}(PPh_3)_4$ phenil rings partially delocalizes the hole, nevertherless the spatial localization of holes and electrons does not change substantially. These results suggest that the substitution of phenyl with methyl groups does not change the nature of the excited states while providing a great advantage in term of computational efficiency.

Figure S2: Normalized spectra of $Cd_{10}Se_4(SePh)_{12}(PPh_3)_4$ (blue) and $Cd_{10}Se_4(SeMe)_{12}(PMe_3)_4$ (red) obtained using cam-b3lyp functional, lanl2dz basis set for Cd and Se atoms and 6-31g(d) for C, H and P atoms.

Figure S3: Natural transition orbitals of the first two transition for $Cd_{10}Se_4(SePh)_{12}(PPh_3)_4$ and $Cd_{10}Se_4(SeMe)_{12}(PMe_3)_4$, together with their singular value

2. Formal definition of the participation ratio (PR) and charge transfer (CT) indexes

The analysis is based on the one-particle transition density matrix⁵ which describes the electronic excitation between the ground state $|\Psi_0\rangle$ and the electronically excited state $|\Psi_E\rangle$

$$\rho_{pq}^{0E} = \left\langle \psi_0 \left| \hat{p}^{\dagger} \hat{q} \right| \psi_E \right\rangle \tag{1}$$

where \hat{p}^{\dagger} and \hat{q} are the (spin averaged) creation and annihilation operators of the orbitals p and q. Following Ref.⁶ let us first consider the simplest case of two systems, A and B, each characterized by two active orbitals, a HOMO ground state (g) orbital and a LUMO virtual orbital (e), which may interact to form a dimer. In the ground state both g_A and g_B are doubly occupied while e_A and e_B are empty. By considering single excitations from the ground state, four excited states can be built

$$\begin{split} |\Psi_{g_A \to e_A}\rangle &= \frac{1}{\sqrt{2}} e_A^{\dagger} g_A |\Psi_0\rangle \qquad \qquad |\Psi_{g_B \to e_B}\rangle &= \frac{1}{\sqrt{2}} e_B^{\dagger} g_B |\Psi_0\rangle \\ |\Psi_{g_B \to e_A}\rangle &= \frac{1}{\sqrt{2}} e_A^{\dagger} g_B |\Psi_0\rangle \qquad \qquad |\Psi_{g_A \to e_B}\rangle &= \frac{1}{\sqrt{2}} e_B^{\dagger} g_A |\Psi_0\rangle \end{split}$$

The two states in the first row corresponds to excitation where both the hole and the electron are localized in the same fragment, while the states in the second row describe charge transfer (CT) states where an electron from the HOMO of one fragment is excited to the LUMO of the other fragment. These states are showed in figure S1 in the localized basis. In an ideal homodimer, the localized excitation and the CT are pairwise degenerated, leading to delocalized eigenfunctions: two excitonic resonance states and two charge resonance states showed in the second row of figure S1.

Figure S3: Schematic representation of excited states in an ideal homodimer. On the left excitations where the initial and final orbitals are located on the same system, on the right the charge transfer states. The top panels represent localized excitations while, in the bottom panels, their linear combination are delocalized states.

Based on the transition density matrix corresponding to an electronic excited state we now introduce two indexes which are able to quantify the charge transfer character and the delocalization of the exciton. The transition density matrix, Eq.(1), of the states shown in figure 3 in the local basis (g_A , e_A , g_B , e_B) are reported in Table 1.

State	$ \Psi_{g_A \to e_A}\rangle$	$ \Psi_{g_B \to e_B}\rangle$	$ \Psi_{g_B \to e_A}\rangle$	$ \Psi_{g_A \to e_B}\rangle$
${\hat ho}^{0E}$	$\begin{pmatrix} 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
$arOmega^{0E}$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$
СТ	0	0	1	1
PR	1	1	1	1
PR _{NTO}	1	1	1	1
State	$ \psi_{lpha} angle$	$ \psi_{eta} angle$	$ \psi_{\gamma} angle$	$ \psi_{\delta} angle$
State $\hat{ ho}^{0E}$	$ \psi_{lpha} angle \ \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & -1 \ 0 & 0 & 0 & 0 \end{array} ight)$	$ \psi_eta angle \ \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ \end{array} ight)$	$ \psi_{\gamma} angle \ egin{pmatrix} 0 & 0 & 0 & -1 \ 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ \end{pmatrix}$	$ \psi_\delta angle \ \left(egin{array}{cccc} 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ \end{array} ight)$
State $\hat{ ho}^{0E}$ Ω^{0E}	$ert \psi_lpha angle \ \begin{pmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & -1 \ 0 & 0 & 0 & 0 \ \end{pmatrix} \ \begin{pmatrix} 0.5 & 0 \ 0 & 0.5 \end{pmatrix}$	$ \psi_{eta} angle \ \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0.5 & 0 \ 0 & 0.5 \ \end{array} ight)$	$ \begin{array}{c} \psi_{\gamma}\rangle \\ \left(\begin{smallmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 \\ \left(\begin{smallmatrix} 0 & 0.5 \\ 0.5 & 0 \end{smallmatrix}\right) \end{array} \right) $	$ \begin{array}{c} \psi_{\delta}\rangle \\ \left(\begin{smallmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 \\ (0.5 & 0 \\ \end{array}\right) $
State ρ ^{0E} Ω ^{0E} CT	$ \psi_{lpha} angle \ \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & -1 \ 0 & 0 & 0 & 0 \ \left(egin{array}{cccc} 0.5 & 0 \ 0 & 0.5 \ \end{array} ight) \ \left(egin{array}{cccc} 0.5 & 0 \ 0 & 0.5 \ \end{array} ight) \ 0 \end{array} ight.$	$\begin{array}{c} \psi_{\beta}\rangle \\ \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix} \\ 0 \end{array}$	$ \begin{array}{c} \psi_{\gamma}\rangle \\ \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \begin{pmatrix} 0 & 0.5 \\ 0.5 & 0 \end{pmatrix} \\ 1 \end{array} $	$ \psi_{\delta}\rangle \\ \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0.5 \\ 0.5 & 0 \end{pmatrix} \\ 1$
State $\hat{ ho}^{0E}$ Ω^{0E} CT PR	$ \begin{array}{c} \psi_{\alpha}\rangle \\ \left(\begin{smallmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ \left(\begin{smallmatrix} 0.5 & 0 \\ 0 & 0.5 \end{smallmatrix}\right) \\ 0 \\ 2 \end{array} $	$\begin{array}{c} \psi_{\beta}\rangle\\ \begin{pmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0\\ \begin{pmatrix} 0.5 & 0\\ 0 & 0.5 \end{pmatrix}\\ 0\\ 2 \end{array}$	$ \begin{array}{c} \psi_{\gamma}\rangle \\ \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} \\ \begin{pmatrix} 0 & 0.5 \\ 0.5 & 0 \\ \end{pmatrix} \\ 1 \\ 2 \end{array} $	$ \psi_{\delta}\rangle \\ \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0.5 \\ 0.5 & 0 \end{pmatrix} \\ 1 \\ 2 \end{pmatrix}$

Table S1 Transition density matrix $\hat{\rho}^{0E}$ represented in local basis (g_A, e_A, g_B, e_B); matrix of charge tranfer numbers Ω^{0E} ; Charge Transfer index (CT); partecipation ratio (PR) and partecipation ratio of NTO (PR_{NTO}). The table on top refers to locally excited states $|\Psi_{g_A \to e_A}\rangle$ and $|\Psi_{g_B \to e_B}\rangle$ and charge tranfer states $|\Psi_{g_B \to e_A}\rangle$, $|\Psi_{g_A \to e_B}\rangle$. The bottom table refers to excitonic resonant states $|\Psi_{\alpha}\rangle$ and $|\Psi_{\beta}\rangle$ and charge resonance states $|\Psi_{\nu}\rangle$, $|\Psi_{\delta}\rangle$.

The transition densities for states composed of local excitations have non-zero elements on the diagonal blocks while states containing charge-transfer configurations have non-zero elements in the off-diagonal blocks. From this consideration, a charge transfer number Ω_{AB}^{0E} has been defined as the summation of the transition density matrix elements

$$\Omega_{AB}^{0E} = \sum_{\substack{a \in A \\ b \in B}} \left(\rho_{ab}^{0E} \right)^2$$

where A and B index the two fragments. If A=B then *a* and *b* are orbitals localized on the same fragment and $\Omega_{AA}, \Omega_{BB} \neq 0$ are the weights of local excitations. For charge transfer contributions, orbitals *a* and *b* are in different fragments and $\Omega_{AB}, \Omega_{BA} \neq 0$. A one-value index reflecting the charge transfer character (CT) is defined as

$$\mathsf{CT} = \frac{1}{\Omega} \sum_{\substack{A \\ B \neq A}} \Omega_{AB}$$

Where the normalization factor is $\Omega = \sum_{A,B} \Omega_{AB}$ is exactly 1 for a normalized CIS wave function, while is very close to one for states mainly described by a single electron transition. The CT index describes the total amount of configurations where the orbitals in the initial and in the final state belong to different fragments. It assumes value of 1 if the excitation is a net charge transfer while is 0 when the excitation is purely local, see e.g. Table 1.

The general formulation for non-orthogonal atomic orbitals has been proposed and developed by Plasser et. al^{6,}⁷ and can be applied to the TDDFT formalism.

Another index quantifies the *degree of delocalization* of the excited state amongst different fragments. The participation ratio (PR) reflects the number of fragments participating to the initial and final states involved in the excitation

$$PR = \frac{1}{2} \left(\frac{\Omega^2}{\sum_A (\sum_B \Omega_{AB})^2} + \frac{\Omega^2}{\sum_B (\sum_A \Omega_{AB})^2} \right)$$

where the sum in parenthesis of the first term considers all the configurations where the initial orbital is localized on the specific fragment A and goes over any possible fragments B. The first term quantifies the delocalization of the *hole* while the second term refers to the *electron*. For the states of figure 3, PR=1 for the state involving completely localized hole and electron states while PR=2 for the resonant excitonic and CT states.

Figure S4: Top panels show simulated absorption spectra by broadened gaussian functions for each transition. Panels below report PR, CT and PR_{NTO}, each bar represent an excited states. a) $(Cd_{13}Se_{13})$ -PDTC- $(Cd_{13}Se_{13})$ system, gaussian broadening σ =0.05eV; b) $(Cd_{13}Se_{13})$ -BTT- $(Cd_{13}Se_{13})$ with σ =0.05eV; c) $Cd_{17}Se_4(SCH_3)_{26}$ -Py-Py- $Cd_{17}Se_4(SCH_3)_{26}$ system and σ =0.04eV, d) $(Cd_{13}Se_{13})$ -NTT- $(Cd_{13}Se_{13})$ system, gaussian broadening σ =0.05eV; e) $(Cd_{13}Se_{13})$ -propanDTC- $(Cd_{13}Se_{13})$ with σ =0.05eV.

3. Details on the electronic structure of (Cd₁₃Se₁₃)-PDTC-(Cd₁₃Se₁₃)

3.1. Density of states of monomer (Cd₁₃Se₁₃)-PDTC and dimer (Cd₁₃Se₁₃)-PDTC

Figure S5: Projected density of states for monomer ($Cd_{13}Se_{13}$)-PDTC (left) and for dimer ($Cd_{13}Se_{13}$)-PDTC-($Cd_{13}Se_{13}$) (right), obtained with Mulliken scheme (FWHM=0.1eV). PDTC ligand states reported in blue and $Cd_{13}Se_{13}$ states in red. Black line represents the total density of states (TDOS).

3.2. Simulated spectra of monomer (Cd₁₃Se₁₃)-PDTC and dimer of (Cd₁₃Se₁₃)-PDTC-(Cd₁₃Se₁₃)

Figure S6: Simulated absorption spectra (σ =0.05eV) of monomer (Cd₁₃Se₁₃)-PDTC (left, blue) and of dimer (Cd₁₃Se₁₃)-PDTC-(Cd₁₃Se₁₃) (right, red). First excited states are progressively numbered. Between parentheses, the excited states with low oscillator strength, difficult to pinpoint by eye, are reported.

3.3. Frontier orbitals of monomer ($Cd_{13}Se_{13}$)-PDTC

Figure S7: Monomer (Cd₁₃Se₁₃)-PDTC representative frontier orbitals are reported as level scheme. Orbitals placed side by side differ in energy less than 45meV.

3.4. Selected Natural Transition Orbitals for (Cd₁₃Se₁₃)-PDTC

NTO 1st excited state

Figure S8: for the first two excited states excitation energy (E), oscillator strength (f) and Natural Transition orbitals (NTOs) with their singular values (λ_i) are reported.

3.5. Frontier orbitals of dimer (Cd₁₃Se₁₃)-PDTC-(Cd₁₃Se₁₃)

Figure S9: Dimer (Cd₁₃Se₁₃)-PDTC-(Cd₁₃Se₁₃) representative frontiers orbitals reported as level scheme.

3.6. Selected Natural transition orbitals of dimer (Cd₁₃Se₁₃)-PDTC-(Cd₁₃Se₁₃)

NTO 1st excited state

E=3.631 f= 0.035

 $\lambda_2 = 0.17$

Figure S10: NTOs of representative low-energy excites states of dimer (Cd₁₃Se₁₃)-PDTC-(Cd₁₃Se₁₃).

4. Details on the electronic structure of (Cd₁₃Se₁₃)-propanDTC-(Cd₁₃Se₁₃)

4.1. Density of states of monomer (Cd₁₃Se₁₃)-propanDTC and dimer of (Cd₁₃Se₁₃)-propanDTC-(Cd₁₃Se₁₃)

Figure S11: Projected density of states for monomer ($Cd_{13}Se_{13}$)-propan-DTC (left) and for dimer ($Cd_{13}Se_{13}$)propanDTC -($Cd_{13}Se_{13}$) (right) obtained with Mulliken scheme (FWHM=0.1eV). NTT ligand states reported in blue and $Cd_{13}Se_{13}$ states in red. Black line represents the total density of states (TDOS). Vertical dashed lines point to HOMO orbitals

4.2. simulated spectra of monomer (Cd₁₃Se₁₃)-propanDTC and dimer of (Cd₁₃Se₁₃)-propanDTC-(Cd₁₃Se₁₃)

Figure S12: Simulated absorption spectra (σ =0.05eV) of monomer (Cd₁₃Se₁₃)-propanDTC (left, blue) and of dimer (Cd₁₃Se₁₃)-propanDTC-(Cd₁₃Se₁₃) (right, red). First excited states are progressively numbered. Between parentheses, the excited states with low oscillator strength, difficult to pinpoint by eye, are reported.

4.3. Natural transition orbitals of monomer (Cd₁₃Se₁₃)-propan DTC

Figure S13: NTOs of representative low-energy excites states of monomer (Cd₁₃Se₁₃)-propanDTC

4.4. Natural transition orbitals of dimer (Cd₁₃Se₁₃)-propanDTC-(Cd₁₃Se₁₃)

NTO 1st excited state

NTO 5 th excited state E=3.6293 eV f=0.0468	Local excitation on a single dot
NTO 6th excited state E=3.6156 eV	Local excitation on a single dot
f=0.0094	

Figure S14: NTOs of representative low-energy excites states of dimer (Cd₁₃Se₁₃)-propanDTC-(Cd₁₃Se₁₃)

5. Comparison between PDTC and propan-DTC

Figure S15: Normalized spectra of monomer (Cd₁₃Se₁₃)-propanDTC (blue), dimer (Cd₁₃Se₁₃)-propanDTC- (Cd₁₃Se₁₃) (red), dimer (Cd₁₃Se₁₃)-PDTC-(Cd₁₃Se₁₃) (black)

6. Details on the electronic structure of (Cd₁₃Se₁₃)-BTT-(Cd₁₃Se₁₃)

6.1. Density of states of monomer (Cd₁₃Se₁₃)-BTT and dimer of (Cd₁₃Se₁₃)-BTT-(Cd₁₃Se₁₃)

Figure S16: Projected density of states for monomer ($Cd_{13}Se_{13}$)-BTT (left) and for dimer ($Cd_{13}Se_{13}$)-BTT- ($Cd_{13}Se_{13}$) (right) obtained with Mulliken scheme (FWHM=0.1eV). BTT ligand states reported in blue and $Cd_{13}Se_{13}$ states in red. Black line represents the total density of states (TDOS).

6.2. Simulated spectra of monomer (Cd₁₃Se₁₃)-BTT and dimer of (Cd₁₃Se₁₃)-BTT-(Cd₁₃Se₁₃)

Figure S17: Simulated absorption spectra (σ =0.05eV) of monomer (Cd₁₃Se₁₃)-BTT (left, blue) and of dimer (Cd₁₃Se₁₃)-BTT-(Cd₁₃Se₁₃) (right, red). First excited states are progressively numbered.

6.3. Natural transition orbitals monomer (Cd₁₃Se₁₃)-BTT

NTO 1st excited state

6.4. Natural transition orbitals of dimer of (Cd₁₃Se₁₃)-BTT-(Cd₁₃Se₁₃)

NTO 1st excited state

Figure S19: NTOs of representative low-energy excites states of dimer (Cd₁₃Se₁₃)-BTT-(Cd₁₃Se₁₃)

7. Details on the electronic structure of (Cd₁₃Se₁₃)-NTT-(Cd₁₃Se₁₃) 7.1. Density of states of monomer (Cd₁₃Se₁₃)-NTT and dimer of (Cd₁₃Se₁₃)-NTT-(Cd₁₃Se₁₃)

Figure S20: Projected density of states for monomer ($Cd_{13}Se_{13}$)-NTT (left) and for dimer ($Cd_{13}Se_{13}$)-NTT- ($Cd_{13}Se_{13}$) (right) obtained with Mulliken scheme (FWHM=0.1eV). NTT ligand states reported in blue and $Cd_{13}Se_{13}$ states in red. Black line represents the total density of states (TDOS). Vertical dashed lines point to HOMO orbitals

7.2. Simulated spetra of monomer (Cd₁₃Se₁₃)-NTT and dimer of (Cd₁₃Se₁₃)-NTT-(Cd₁₃Se₁₃)

Figure S21: Simulated absorption spectra (σ =0.05eV) of monomer (Cd₁₃Se₁₃)-NTT (left, blue) and of dimer (Cd₁₃Se₁₃)-NTT-(Cd₁₃Se₁₃) (right, red). First excited states are progressively numbered.

7.3. Frontier Orbitals of monomer (Cd₁₃Se₁₃)-NTT

Figure S22: Monomer (Cd₁₃Se₁₃)-NTT representative frontiers orbitals reported as level scheme

Figure S23: NTOs of representative low-energy excites states of monomer (Cd₁₃Se₁₃)-NTT

7.5. Frontier orbitals of dimer (Cd₁₃Se₁₃)-NTT-(Cd₁₃Se₁₃)

Figure S24: Dimer (Cd₁₃Se₁₃)-NTT-(Cd₁₃Se₁₃) representative frontiers orbitals reported as level scheme.

7.6. Natural transition orbitals of dimer (Cd₁₃Se₁₃)-NTT-(Cd₁₃Se₁₃) NTO 1st excited state

Figure S25: NTOs of representative low-energy excites states of dimer (Cd₁₃Se₁₃)-NTT-(Cd₁₃Se₁₃)

8. Comparison between BTT and NTT

Figure S26: Normalized spectra of monomer (Cd₁₃Se₁₃)-BTT (black), dimer (Cd₁₃Se₁₃)-BTT-(Cd₁₃Se₁₃) (blue), dimer (Cd₁₃Se₁₃)-NTT-(Cd₁₃Se₁₃) (red)

9. Details on the electronic structure of Cd₁₇Se₄(SCH₃)₂₆-Py-Py- Cd₁₇Se₄(S CH₃)₂₆

Figure S27: Projected density of states for monomer $Cd_{17}Se_4(SCH_3)_{26}$ -Py (left) and for dimer $Cd_{17}Se_4(SCH_3)_{26}$ -Py-Py-Cd₁₇Se₄(SCH₃)₂₆ (right), obtained with Mulliken scheme (FWHM=0.1eV). PDTC ligand states reported in blue and $Cd_{13}Se_{13}$ states in red. Black line represents the total density of states (TDOS).

9.2. Simulated spectra of monomer Cd₁₇Se₄(SCH₃)₂₆-Py

Figure S28: Simulated absorption spectra (σ =0.04eV) of monomer Cd₁₇Se₄(SCH₃)₂₆-Py is reported in blue on the left where the firsts excited states are progressively numbered. Table on the right reports energy (E), oscillator strength (f) and description of the selected low energy excited states.

9.3. Natural transition orbitals of monomer Cd₁₇Se₄(SCH₃)₂₆-Py

NTO 1st excited state

Figure S29: NTOs of representative low-energy excites states of monomer Cd₁₇Se₄(SCH₃)₂₆-Py

9.4. Simulated spectra of dimer Cd₁₇Se₄(SCH₃)₂₆-Py-Py-Cd₁₇Se₄(SCH₃)₂₆

Figure S30: Simulated absorption spectra (σ =0.04eV) of dimer Cd₁₇Se₄(SCH₃)₂₆-Py- Cd₁₇Se₄(SCH₃)₂₆ is reported in red on the left where the firsts excited states are progressively numbered. Between parenthesis are reported the excited states with low oscillator strength and difficult to pinpoint by eye. Table on the right reports energy (E), oscillator strength (f) and description of selected low energy excited states.

9.5. Natural transition orbitals of dimer $Cd_{17}Se_4(SCH_3)_{26}$ -Py-Py-Cd₁₇Se₄(SCH₃)₂₆ NTO 5th excited state

NTO 17th excited state

Figure S31: NTOs of representative low-energy excites states of dimer Cd₁₇Se₄(SCH₃)₂₆-Py-Py-Cd₁₇Se₄(SCH₃)₂₆

10. Structures, distances and coupling

Table S2: structure of the QD dimers and relative distance between nearest QD atoms; red shift between monomer and dimer on first absorption peak of the simulated spectra; electronic coupling as semi-difference of first coupled excitons. For BTT and NTT systems the electronic coupling cannot be computed.

11.Optimized Coordinates

11.1. Cd₁₃Se₁₃-PDTC-Cd₁₃Se₁₃

Se 2	.990469	2.936064	2.804616
Se 5	.165481	-0.541825	0.152427
Se 3	.044265	3.354072	-2.059333
Cd 3	3.549607	0.410204	2.185613
Cd 1	.837736	3.451143	0.293001
Cd 3	3.773808	0.703917	-1.742117
Cd C	.352158	2.443852	3.114024
Cd 1	.050670	1.973801	-3.391948
Cd 3	3.310995	-2.515997	0.529656
Se -O	.760557	3.955414	1.139990
Se 2	.439171	-0.316751	-3.915794
Se 2	.660904	-2.031430	3.147817
Se -1	.072778	0.514069	4.383286
Se 2	.036620	-4.081850	-1.244927
Se -1	.569089	2.353195	-3.316242
Cd C	.131029	-1.312420	2.542945
Cd C	.780717	-1.625052	-2.252982
Cd -1	1.502733	2.001332	-0.628228
Se O	.558744	0.081823	0.084436
Se -1	.893385	-3.156494	1.850931
Se -3	.964914	0.756786	0.198246
Se -1	.783638	-2.451159	-2.657004
Cd -2	2.865623	0.845220	2.531540
Cd -0).145730	-4.107086	0.157822
Cd -2	2.662258	-0.085484	-3.820696
Cd -2	2.648090	-1.563762	-0.296880
C -6.3	321194 -	1.792063	-7.914536
C -6.9	983493 -	0.884433	-7.078527
C -8.1	L49372 -	0.256684	-7.538772
C -8.6	549470 -	0.511505	-8.811339
C -7.9	987331 -	1.419123	-9.647435
C -6.8	321196 -	2.046815	-9.187001
H -5.4	433645 -	2.304054	-7.567307
Н -8.6	559213	0.460200	-6.900006
Н -9.5	536730	0.000969	-9.158360
Н -6.3	311179 -	2.763668	-9.825687

H -7.332547 -0.422749 -5.103273
N -6.573589 -0.612304 -5.748663
C -5.342052 -0.454681 -5.194258
S -3.897467 -0.546276 -6.139425
S -5.334936 -0.119286 -3.492871
N -8.396326 -1.692724 -10.976999
H -7.636783 -1.888416 -11.619856
C -9.626915 -1.839041 -11.536668
S-11.075614 -1.729780 -10.599757
S -9.629474 -2.167928 -13.239358
Se -18.307155 -0.412533 -15.667482
Se -18.118042 -2.570483 -20.041374
Se -19.950760 -5.051717 -16.254567
Cd -17.072686 -1.053655 -17.917728
Cd -18.738206 -3.057384 -14.977692
Cd -18.410287 -4.740505 -18.530690
Cd -16.201781 -0.986020 -13.966230
Cd -17.885265 -6.813435 -15.925507
Cd -15.437314 -2.854686 -20.210917
Se -17.342587 -3.062418 -12.611389
Se -17.242718 -7.252838 -18.553749
Se -14.528945 -0.617417 -18.949250
Se -13.638023 -0.379942 -14.232073
Se -13.784417 -4.946767 -20.716758
Se -16.482373 -7.475238 -13.730276
Cd -13.613980 -1.693366 -16.603308
Cd -14.817851 -6.093254 -18.311038
Cd -15.519371 -4.700168 -13.716289
Se -15.440673 -3.952888 -16.521117
Se -11.016354 -2.881143 -16.973274
Se -12.887482 -5.038413 -13.097746
Se -12.619926 -7.328916 -17.037864
Cd -12.294446 -2.333221 -12.895428
Cd -12.077108 -3.764037 -19.154346
Cd -14.285974 -7.778506 -15.076942
Cd -12.086515 -4.988271 -15.639790

11.2. Cd₁₃Se₁₃-BTT-Cd₁₃Se₁₃

С	-3.656049 -0.506096 -5.543027
С	-2.341288 -0.352182 -5.081826
С	-1.752292 0.900214 -4.905811
С	-2.442323 2.091767 -5.248766
С	-3.751764 1.932227 -5.737793
С	-4.356191 0.681178 -5.854706
Н	-1.781573 -1.243882 -4.819515
Н	-4.314695 2.829181 -5.980242
S	-1.771421 3.727773 -5.128360
S	-0.143801 0.924636 -4.103054
S	-6.113474 0.660320 -6.254228
S	-4.378203 -2.141959 -5.641698
Se	-5.841876 -2.447409 4.165321
Se	-8.812831 -4.816367 1.020981
Se	-10.757543 -1.295674 3.887144
Cd	-6.546555 -3.493965 1.867571
Cd	-8.146282 -0.911779 4.278025
Cd	-10.364805 -2.677774 1.554306
Cd	-4.853331 0.165297 3.553154
Cd	-11.049941 0.594685 1.846269
Cd	-7.924368 -3.742199 -1.272754
Se	-6.837872 1.468219 4.849999
Se	-11.786726 -1.115143 -0.193325
Se	-5.171690 -3.562169 -0.753360
Se	-3.382290 0.352407 1.375402
Se	-8.270583 -2.141873 -3.374097
Se	-10.270215 3.145132 1.803547
Cd	-5.336474 -0.873242 -0.124811
Cd	-9.515844 -0.439778 -1.515752
Cd	-7.673028 2.302153 2.467860
Se	-7.808103 -0.277172 0.820374
Se	-4.699019 0.529101 -2.467829
Se	-6.431392 3.917891 0.602509
Se	-9.386101 2.046712 -2.901783

Cd	-4.518487	2.361717	-0.447881
Cd	-5.431680	-2.189485	-3.318801
Cd	-8.885332	3.108637	-0.517482
Cd	-6.994861	1.159930	-3.579360
Se	2.926656	8.898256	-0.927778
Se	3.257458	8.758355	3.901224
Se	-0.696208	10.811669	1.869013
Cd	3.347092	7.583883	1.342550
Cd	0.298593	9.499302	-0.218124
Cd	0.634835	9.219111	3.697662
Cd	1.472141	6.876708	-2.090114
Cd	-2.536528	8.876512	2.588435
Cd	2.819287	6.122136	4.266801
Se	-0.958245	8.087095	-2.231319
Se	-1.554751	8.221333	5.045789
Se	3.992762	4.980815	2.053862
Se	1.937537	4.252109	-2.185386
Se	1.143274	4.611453	5.762185
Se	-4.223037	7.586248	0.981509
Cd	1.742588	4.225319	0.553295
Cd	-1.029142	5.703162	4.162288
Cd	-1.952188	6.513910	-0.263866
Se	0.139746	6.310653	1.631752
Se	1.000220	1.698281	1.616980
Se	-2.245875	3.810601	-0.675324
Se	-2.927522	3.730099	3.773372
Cd	-0.598414	3.560278	-2.835787
Cd	1.492794	2.885582	3.854339
Cd	-4.440348	5.219135	2.158634
Cd	-1.569753	2.566127	1.701075
Н	0.487329	1.732721	-4.987240
Н	-6.194682	-0.703655	-6.17122

Cd	-11.954547	0.011980 -0.056096
Cd	-11.585494	-1.210209 -4.307209
Cd	-14.057713	-4.538205 -4.580706
Cd	-5.999809	0.486227 -0.150348
Cd	-8.862286	1.537162 -2.727261
Cd	-8.599848	-2.374252 -0.126140
Cd	-12.027449	-4.424904 -0.894288
Cd	-15.172405	-1.266125 -2.288815
Se	-9.283866	0.287178 -0.297837
Se	-12.554160	-1.886844 -1.822261
Cd	-12.656517	2.804627 -3.255506
Cd	-12.460742	1.050203 4.390271
Cd	-14.533522	-2.244782 5.841627
Cd	-14.220874	5.599867 -0.948579
Cd	-11.573218	3.906218 1.506715
Cd	-15.558027	2.100576 0.092825
Cd	-15.733950	-1.507349 1.831325
Cd	-11.714167	-2.840312 2.965510
Se	-12.891442	2.500866 -0.491196
Se	-13.133601	-0.614245 2.268503
Cd	-8.883267	0.801917 2.516135
С	-16.198331	8.226970 -0.394459
С	-16.816367	9.467306 -0.534913
С	-16.525793	10.235227 -1.663792
С	-15.630771	9.734120 -2.609930
С	-15.056120	8.483870 -2.390574
Ν	-15.332503	7.744140 -1.302840
Н	-16.395722	7.580226 0.456532
Н	-17.509302	9.816658 0.223534
Н	-15.379619	10.295962 -3.503578
Н	-14.360279	8.039472 -3.097227
С	-2.869225	0.419145 1.069984
С	-1.479480	0.407758 1.126690
С	-0.741096	0.780944 -0.006667
С	-1.459691	1.149433 -1.153811
С	-2.850352	1.129198 -1.125194
Ν	-3.548076	0.774191 -0.033754
Н	-3.476902	0.128533 1.922713
Н	-0.982933	0.084921 2.035746
Н	-0.947757	1.467836 -2.055826
Н	-3.442345	1.395677 -1.996729
S	-15.483753	-3.293565 7.921843
С	-16.153767	-4.870628 7.217369

Н	-16.804631	-5.330508	7.967082
н	-15.352724	-5.578175	6.978814
Н	-16.739235	-4.698312	6.309149
S	-12.016952	-3.083651	5.506732
С	-12.336793	-4.880451	5.820711
Н	-12.840194	-5.350646	4.972866
Н	-12.969317	-4.953359	6.709439
Н	-11.388463	-5.391520	6.001331
S	-12.261288	-5.003660	1.658840
С	-14.073327	-5.159921	1.980486
Н	-14.474204	-5.968856	1.366354
Н	-14.604354	-4.237486	1.742760
Н	-14.240250	-5.390874	3.034555
S	-16.616707	-2.447998	-0.464443
С	-15.971878	-4.157936	-0.721653
Н	-16.395335	-4.825709	0.030391
Н	-14.883278	-4.182218	-0.651980
Н	-16.261964	-4.507339	-1.715415
S	-15.608721	-2.371275	-4.570303
С	-17.276775	-3.162699	-4.402060
Н	-17.546040	-3.292472	-3.350487
Н	-17.245548	-4.135496	-4.900768
Н	-18.022068	-2.526201	-4.885403
S	-15.246183	-6.046645	-6.205950
С	-14.907361	-7.718835	-5.489611
Н	-15.655584	-8.419259	-5.873155
Н	-14.971203	-7.711765	-4.397084
Н	-13.916830	-8.081450	-5.784151
S	-13.366870	-5.990583	-2.429523
С	-12.004509	-6.945849	-3.248481
Н	-12.454866	-7.757237	-3.824083
Н	-11.341928	-7.368014	-2.488757
Н	-11.432053	-6.304977	-3.923752
S	-9.402771	-4.676287 ·	0.939723
С	-8.976701	-4.722867	-2.739252
Н	-7.932948	-4.430251	-2.872261
Н	-9.620151	-4.065995	-3.327328
Н	-9.108977	-5.748523	-3.089468
S	-6.033286	-2.093278 -	0.696221
С	-5.208931	-2.785688	0.810550
н	-5.412317	-3.857843	0.869959
н	-5.562815	-2.295639	1.720599
Н	-4.128889	-2.636869	0.725896

s	-9 089033	3 477186 2 132036
C	-8.115891	3,720660 0,592149
н	-8 514983	3 124352 -0 229782
н	-7 083924	3 403419 0 773026
н	-8 118676	<i>A</i> 77797 <i>A</i> 0 317891
c	6 210059	1 764020 2 412EEE
с С	-0.210038	1.704039 - 2.413333
	-5.875055	3.302063 -2.104114 4.054909 -2.129570
	-5.910591	4.054898 -3.138579
н	-4.8/421/	3.695932 -1.738193
н	-6.605753	4.028845 -1.504559
S	-6.225079	0.543832 2.455974
С	-5.601598	2.181404 3.046997
н	-6.353895	2.960895 2.908849
Н	-4.686792	2.450816 2.510892
Н	-5.377413	2.101020 4.113308
S	-12.186712	6.305688 0.514459
С	-13.021961	7.120119 1.952143
Н	-12.256336	7.506345 2.628600
Н	-13.650570	6.415799 2.500939
Н	-13.632867	7.952589 1.592479
S	-16.287091	4.647237 0.356155
С	-17.633135	4.754126 -0.909589
Н	-18.568908	4.419731 -0.455433
Н	-17.409755	4.125710 -1.774396
Н	-17.746432	5.790527 -1.239600
S	-13.885044	5.138906 -3.494966
С	-15.601318	4.733034 -4.057573
Н	-15.944010	3.793005 -3.620371
Н	-15.594437	4.640512 -5.146372
Н	-16.280024	5.542220 -3.774834
S	-15.974303	1.249350 -2.348632
С	-17.785242	0.873389 -2.464902
Н	-17.969524	0.286779 -3.368547
н	-18.345818	1.809629 -2.522531
н	-18.115998	0.307350 -1.591260
S	-12.692239	1.038031 -5.128717
С	-14.423387	0.813064 -5.729005
Н	-14.704391	1.702471 -6.298776
Н	-15.117921	0.668311 -4.902785
Н	-14.458826	-0.062978 -6.378393
S	-9.140740	-0.249428 -4.576359
С	-8.064185	-1.562494 -3.855203
Н	-7.044453	-1.184155 -3.745743
Н	-8.059168	-2.427534 -4.520854
Н	-8.430410	-1.874818 -2.874680

S	-11.700736	-3.549017 -5.383268
С	-12.151453	-3.251212 -7.155618
Н	-12.434598	-4.207911 -7.600785
Н	-11.292885	-2.833647 -7.686866
Н	-12.999730	-2.566578 -7.231620
S	-9.201575	-2.090762 2.458899
С	-8.115657	-3.090574 3.564688
Н	-8.602949	-3.215178 4.534326
Н	-7.167539	-2.564046 3.697073
Н	-7.936923	-4.071899 3.119894
S	-9.912338	1.075875 4.912968
С	-9.498002	-0.497219 5.780940
Н	-8.412978	-0.552789 5.901392
Н	-9.848405	-1.365222 5.225696
Н	-9.970652	-0.500602 6.765325
S	-14.465892	0.413312 5.880441
С	-13.921737	0.675463 7.630830
Н	-14.702513	0.296207 8.294360
Н	-13.776790	1.743202 7.812189
Н	-12.991578	0.140513 7.836833
S	-12.760412	3.616335 3.799468
С	-14.546283	3.523104 3.355639
Н	-14.878066	4.446751 2.876749
Н	-15.125441	3.361447 4.266520
Н	-14.732877	2.683647 2.680953
S	-17.165498	0.692723 1.537527
С	-17.253594	1.481952 3.206262
Н	-17.324175	2.566246 3.093299
Н	-16.385878	1.234394 3.820264
Н	-18.155811	1.115618 3.701538
Н	-16.990867	11.206698 -1.804534
S	-10.138560	3.659501 -3.446264
С	-10.119566	4.839005 -2.029022
Н	-10.816585	5.653950 -2.239714
Н	-9.118780	5.257171 -1.903387
Н	-10.425259	4.349515 -1.103493
S	-16.199904	-2.985647 3.881203
С	-17.677561	-2.168086 4.648142
Н	-17.815970	-2.589318 5.647192
Н	-18.561278	-2.362696 4.036164
Н	-17.524824	-1.090801 4.744275
Cd	11.954554	0.011967 0.056079
Cd	11.585328	-1.210199 4.307187
Cd	14.057413	-4.538235 4.580797
Cd	5.999798	0.486285 0.150061

Cd	8.862180	1.537155 2.727129
Cd	8.599823	-2.374226 0.125954
Cd	12.027362	-4.424900 0.894266
Cd	15.172297	-1.266141 2.288968
Se	9.283864	0.287197 0.297700
Se	12.554076	-1.886851 1.822266
Cd	12.656390	2.804617 3.255526
Cd	12.460966	1.050202 -4.390263
Cd	14.533784	-2.244803 -5.841493
Cd	14.220877	5.599850 0.948683
Cd	11.573326	3.906203 -1.506730
Cd	15.558061	2.100550 -0.092658
Cd	15.734025	-1.507358 -1.831155
Cd	11.714268	-2.840306 -2.965545
Se	12.891453	2.500847 0.491234
Se	13.133701	-0.614256 -2.268473
Cd	8.883391	0.801942 -2.516295
С	16.198389	8.226930 0.394652
С	16.816424	9.467263 0.535130
С	16.525795	10.235195 1.663987
С	15.630719	9.734101 2.610081
С	15.056071	8.483853 2.390703
Ν	15.332508	7.744113 1.302989
Н	16.395824	7.580178 -0.456323
Н	17.509402	9.816605 -0.223282
Н	15.379521	10.295950 3.503711
Н	14.360188	8.039466 3.097322
С	2.869186	0.419331 -1.070286
С	1.479442	0.407968 -1.126975
С	0.741080	0.780984 0.006467
С	1.459709	1.149401 1.153611
С	2.850372	1.129162 1.124972
Ν	3.548052	0.774250 0.033472
Н	3.476845	0.128824 -1.923067
Н	0.982837	0.085308 -2.036061
Н	0.947801	1.467775 2.055653
Н	3.442404	1.395567 1.996501
S	15.484055	-3.293596 -7.921683
С	16.154133	-4.870613 -7.217167
Н	16.805011	-5.330489 -7.966869
Н	15.353117	-5.578184 -6.978588
Н	16.739596	-4.698247 -6.308954
S	12.017199	-3.083632 -5.506753
С	12.337031	-4.880433 -5.820732
Н	12.840363	-5.350651 -4.972858

н	12.969619	-4.953338	-6.709415
Н	11.388706	-5.391484	-6.001428
S	12.261363	-5.003651	-1.658849
С	14.073426	-5.159843	-1.980392
Н	14.474291	-5.968790	-1.366269
н	14.604406	-4.237400	-1.742591
н	14.240421	-5.390744	-3.034461
S	16.616662	-2.448046	0.464657
С	15.971773	-4.157968	0.721824
н	16.395260	-4.825752	-0.030194
н	14.883175	-4.182222	0.652081
н	16.261786	-4.507380	1.715604
S	15.608431	-2.371311	4.570485
С	17.276490	-3.162749	4.402362
н	17.545827	-3.292531	3.350809
н	17.245222	-4.135542	4.901075
н	18.021756	-2.526255	4.885752
S	15.245770	-6.046684	6.206116
С	14.906880	-7.718877	5.489817
н	15.655091	-8.419316	5.873357
н	14.970695	-7.711830	4.397289
н	13.916345	-8.081457	5.784388
S	13.366691	-5.990603	2.429562
С	12.004279	-6.945873	3.248427
Н	12.454601	-7.757242	3.824083
Н	11.341768	-7.368063	2.488656
Н	11.431757	-6.304996	3.923637
S	9.402685	-4.676286	0.939511
С	8.976457	-4.722935	2.739000
Н	7.932701	-4.430293	2.871931
Н	9.619876	-4.066109	3.327160
Н	9.108670	-5.748612	3.089181
S	6.033245	-2.093241	0.695901
С	5.208957	-2.785598	-0.810934
Н	5.412308	-3.857759	-0.870343
Н	5.562912	-2.295545	-1.720950
Н	4.128915	-2.636741	-0.726341
S	9.089162	3.477201	-2.132174
С	8.115934	3.720651	-0.592337
Н	8.514963	3.124302	0.229595
Н	7.083968	3.403445	-0.773280
Н	8.118732	4.777956	-0.318045
S	6.209984	1.764068	2.413317
С	5.873018	3.562131	2.163916
Н	5.910592	4.054918	3.138394

Н	4.874204	3.696019 1.738000
Н	6.605752	4.028880 1.504373
S	6.225202	0.543881 -2.456249
С	5.601689	2.181426 -3.047290
Н	6.353883	2.960986 -2.908967
Н	4.686761	2.450726 -2.511337
Н	5.377712	2.101091 -4.113647
S	12.186791	6.305681 -0.514459
С	13.022106	7.120108 -1.952105
Н	12.256512	7.506340 -2.628595
Н	13.650735	6.415786 -2.500876
Н	13.633001	7.952576 -1.592415
S	16.287156	4.647207 -0.355941
С	17.633132	4.754075 0.909877
Н	18.568930	4.419690 0.455765
Н	17.409707	4.125643 1.774660
Н	17.746410	5.790470 1.239914
S	13.884920	5.138887 3.495052
С	15.601166	4.732982 4.057727
Н	15.943867	3.792960 3.620518
Н	15.594235	4.640437 5.146523
Н	16.279894	5.542167 3.775035
S	15.974229	1.249314 2.348819
С	17.785161	0.873331 2.465139
Н	17.969413	0.286714 3.368785
Н	18.345744	1.809565 2.522791
Н	18.115935	0.307294 1.591502
S	12.692091	1.038016 5.128744
С	14.423235	0.813030 5.729035
Н	14.704238	1.702423 6.298829
Н	15.117771	0.668295 4.902813
Н	14.458670	-0.063029 6.378400
S	9.140570	-0.249399 4.576266
С	8.064069	-1.562512 3.855115
Н	7.044324	-1.184210 3.745645
Н	8.059083	-2.427544 4.520775
Н	8.430311	-1.874829 2.874595
S	11.700389	-3.549046 5.383168
С	12.150901	-3.251329 7.155585

Н	12.433980	-4.208052 7.600742
Н	11.292276	-2.833775 7.686751
Н	12.999178	-2.566710 7.231718
S	9.201665	-2.090737 -2.459043
С	8.115776	-3.090526 -3.564880
Н	8.603093	-3.215112 -4.534508
Н	7.167663	-2.563996 -3.697282
Н	7.937031	-4.071861 -3.120110
S	9.912577	1.075890 -4.913085
С	9.498267	-0.497206 -5.781068
Н	8.413248	-0.552769 -5.901566
Н	9.848641	-1.365208 -5.225806
Н	9.970958	-0.500597 -6.765434
S	14.466198	0.413292 -5.880317
С	13.922142	0.675441 -7.630738
Н	14.702948	0.296169 -8.294224
Н	13.777220	1.743181 -7.812112
Н	12.991986	0.140503 -7.836788
S	12.760609	3.616323 -3.799434
С	14.546460	3.523091 -3.355524
Н	14.878215	4.446729 -2.876598
Н	15.125661	3.361459 -4.266383
Н	14.733028	2.683617 -2.680851
S	17.165588	0.692691 -1.537278
С	17.253823	1.481919 -3.206005
Н	17.324414	2.566212 -3.093035
Н	16.386149	1.234376 -3.820073
Н	18.156071	1.115568 -3.701211
Н	16.990868	11.206664 1.804747
S	10.138426	3.659491 3.446176
С	10.119484	4.838969 2.028909
Н	10.816502	5.653914 2.239602
Н	9.118703	5.257141 1.903245
Н	10.425195	4.349459 1.103398
S	16.200093	-2.985652 -3.881003
С	17.677766	-2.168068 -4.647886
Н	17.816250	-2.589333 -5.646911
Н	18.561455	-2.362621 -4.035850
Н	17.524994	-1.090792 -4.744071

12.References

1. Behrens, S.; Marco, B.; Eichhfer, A.; Fenske, D., Synthesis and Crystal Structure of Cd10Se(SePh)12(PPh3)4 and Cd16(SePh)32(PPh3)2. *Angewandte Chemie International Edition* **1997**, *36* (24), 2797--2799.

2. Soloviev, V. N.; Eichhofer, A.; Fenske, D.; Banin, U., Molecular limit of a bulk semiconductor: Size dependence of the 'band gap' in CdSe cluster molecules 15. *Journal of the American Chemical Society* **2000**, *122* (11), 2673--2674.

3. Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G., MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. *Chemical Science* **2016**, *7* (8), 5032-5051.

4. Yanai, T.; Tew, D. P.; Handy, N. C., A new hybrid exchange–correlation functional using the Coulombattenuating method (CAM-B3LYP). *Chemical Physics Letters* **2004**, *393* (1), 51-57.

5. Luzanov, A. V., Excited State Structural Analysis: TDDFT and Related Models. **2012**, 415--449.

6. Plasser, F.; Lischka, H., Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations. *Journal of Chemical Theory and Computation* **2012**, *8* (8), 2777--2789.

7. Plasser, F. W., Michael; Dreuw, A., New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. *J. Chem. Phys.* **2014**, *141*, 024106.