Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supplementary Data

For

Amperometric galectin-3 immunosensor based on gold nanoparticles functionalized graphitic carbon nitride nanosheets and core-shell Ti-MOF@COFs composites

Mehmet Lütfi Yola^{a*}, Necip Atar^b

^aIskenderun Technical University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Hatay, Turkey ^bPamukkale University, Faculty of Engineering, Department of Chemical Engineering, Denizli, Turkey

* To whom correspondence should be addressed:

E-mail: <u>mlutfi.yola@iste.edu.tr</u>

Tel.: +903266135600 Fax: +903266135613

Fig. S1. (A) UV-vis spectra of (a) $g-C_3N_4$, (b) $g-C_3N_4$ @Au NPs composite, (B) Emission spectra (excitation at 360 nm) of (a) $g-C_3N_4$, (b) $g-C_3N_4$ @Au NPs, (c) AuNPs, (C) FTIR spectra of (a) $g-C_3N_4$, (b) $g-C_3N_4$ @Au NPs, (D) XRD pattern of $g-C_3N_4$ and $g-C_3N_4$ @Au NPs

Fig. S2. (A) XRD patterns of COFs, (B) Ti-MOF and Ti-MOF@COF composite, (C) FTIR spectra of COFs, Ti-MOF and Ti-MOF@COF composite

Fig. S3. (A) Survey XPS spectra of Ti-MOF@COF composite, (B) C1s, (C) N1s, (D) Ti2p binding energy spectra and (E) N_2 adsorption-desorption of COFs, Ti-MOF and Ti-MOF@COF composite

*Optimization for amperometric measurements pH effect of H*₂*O*₂ *solution*

pH effect was investigated on immunosensor performance. The immunosensor response increased up to pH 7.0. Furthermore, highly acidic or alkaline medium damaged the immobilized protein. Hence, optimal pH was selected to be pH 7.0 (close to physiological pH) (Fig. S4A) (In the presence of 2.5 mM H_2O_2).

Concentration effect of Ti-MOF@COF/anti-GL-3-Ab2 solution

The concentration of Ti-MOF@COFs/anti-GL-3-Ab₂ solution is important factor on the performance of amperometric immunosensor. The optimal and symmetrical peaks were observed up to 20.0 mg mL⁻¹. Especially, after 20.0 mg mL⁻¹, the optimal and symmetrical peaks decomposed and the signals decreased slightly or remained steady. Hence, the optimal concentration was selected as 20.0 mg mL⁻¹ (Fig. S4B) (In the presence of 2.5 mM H₂O₂ in 0.1 M PBS, pH 7.0).

Immune reaction time effect

When incubation time increased from 15 min to 45 min, peak current responses increase rapidly. After 45 min, immunosensor signals (μ A) either remain constant or slightly diminish. Thus, optimal immune reaction time was selected to be 45 min (Fig. S4C) (In the presence of 2.5 mM H₂O₂ in 0.1 M PBS, pH 7.0).

Concentration effect of H_2O_2

In this study, different H_2O_2 concentrations were tried for obtaining optimal immunosensor signals (Fig. S4D). When H_2O_2 concentration gradually increased from 1.5 mM to 2.5 mM, the peak current gradually increased. After 2.5 mM H_2O_2 , peak current decreased inversely. Due to overdose of H_2O_2 catalyst, the catalytic reaction was inhibited and the overdose of H_2O_2 catalyst affected the activity of the proteins. Thus, the optimal signals were obtained in 2.5 mM H_2O_2 in 0.1 M PBS (pH 7.0).

Fig. S4. Effect of (A) pH, (B) Ti-MOF@COFs/anti-GL-3-Ab₂ solution concentration, (C) Immune reaction time, (D) H_2O_2 concentration (antigen galectin-3 concentration: 0.001 ng mL⁻¹, n = 6)

Tuble SII The recover	J 01 01 J (11 0)		
Plasma sample	Added GL-3	Found GL-3	Recovery
	(ng mL ⁻¹)	(ng mL ⁻¹)	(%)
^a Sample (1)	0.500	0.504 ± 0.002	-
^b Sample (2)	Sample(1) + 0.100	0.604 ± 0.001	100.67 ± 0.07
^c Sample (3)	Sample(1) + 0.200	0.703 ± 0.001	100.43 ± 0.03
^d Sample (4)	Sample(1) + 0.300	0.798 ± 0.004	99.75 ± 0.06

Table S1. The recovery of	fGL-3	(n=6)
----------------------------------	-------	-------

^acontaining 0.500 ng mL⁻¹ GL-3, 100.0 ng mL⁻¹ GLU, 100.0 ng mL⁻¹ DOP, 100.0 ng mL⁻¹ THR, 100.0 ng mL⁻¹ BSA

^bcontaining 0.500 + 0.100 ng mL⁻¹ GL-3, 100.0 ng mL⁻¹ GLU, 100.0 ng mL⁻¹ DOP, 100.0 ng mL⁻¹ THR, 100.0 ng mL⁻¹ BSA

^c containing 0.500 + 0.200 ng mL⁻¹ GL-3, 100.0 ng mL⁻¹ GLU, 100.0 ng mL⁻¹ DOP, 100.0 ng mL⁻¹ THR, 100.0 ng mL⁻¹ BSA

^dcontaining 0.500 + 0.300 ng mL⁻¹ GL-3, 100.0 ng mL⁻¹ GLU, 100.0 ng mL⁻¹ DOP, 100.0 ng mL⁻¹ THR, 100.0 ng mL⁻¹ BSA