Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Controlling Palladium Morphology in Electrodeposition from Nanoparticles to Dendrites via the use of Mixed Solvents

Haytham E. M. Hussein,^{††} Houari Amari, ^{‡§} Ben G. Breeze,[‡] Richard Beanland,[‡] and Julie V.

 $Macpherson^{\dagger *}$

[†]Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK [‡]Department of Physics, University of Warwick, Coventry, CV4 7AL, UK [‡]Department of Chemistry, University of Southampton, SO17 1BJ [§]Leibniz-Institut fuer Kristallzuechtung (IKZ), Max-Born-Str. 2, 12489 Berlin, Germany ^{*}Corresponding author: j.macpherson@warwick.ac.uk

ESI1: Assignment of the Raman spectra recorded in the three different MeCN-water solutions ESI2: Cyclic voltammetry of Pd-acetate in the three different MeCN-water solutions ESI3: High resolution ADF-STEM of a Pd NP on the (110) surface of the BDD TEM electrode ESI4: Statistical analysis summary for Pd nanostructures obtained via electrodeposition

ESI1: Assignment of the Raman spectra recorded in the three different MeCN-water solutions

Solution 1 is organic rich, 90% MeCN:10% water v/v (χ water = 0.243). Solution 2 is equal by volume MeCN and water i.e. 50% MeCN:50% water v/v (χ water = 0.743). Solution 3 is water rich, 90% MeCN:10% water v/v (χ water = 0.963).¹

Figure S1: Raman spectra of (a) Pd-acetate, and (b) C-CH₃ and (c) COO (in acetate) as function of water mole fraction χ water. Grey line represents χ MeCN = 0.757 + χ water = 0.243 (90%:10% v/v), red line represents χ MeCN = 0.257 + χ water = 0.743 (50%:50% v/v), and green line represents χ MeCN = 0.037 + χ water = 0.963 (10%:90% v/v).

Raman shift (cm ⁻¹)	Vibration	Comments
2253	C≡N stretching	Solution 1, Fig1a
2255	C=N stretching	Solution 2, Fig1a
2260	C=N stretching	Solution 3, Fig1a
2933	CH stretching	Solution 1, Fig1b
2936	CH stretching	Solution 2, Fig1b
2940	CH stretching	Solution 3, Fig1b
3200-3600	O-H stretch	Solution 3, Fig1b

Table S1: Band assignment for Raman spectra of Figure 1 (main text).

Fig. 1 in the main text and Fig. S2 show the Raman spectral region of the CN bond. The component at higher wavenumbers (2260 cm⁻¹) is associated with MeCN bound to water, i.e. bound MeCN, whilst that at 2250 cm⁻¹ is assigned to MeCN – MeCN interactions in bulk MeCN i.e. free MeCN.² By implementing the band-fitting procedures outlined by Shurvell et al,³ it is possible to determine the fraction of free MeCN to total MeCN (free + water bound) for each different solution composition.

This method suggests that if C_{total} is the total concentration of one solvent (MeCN), C_{free} is the concentration of the free (unbound) MeCN and C_{bound} is the concentration of the MeCN-water associated solvent. We can then use the following equation to find C_{Total}

$$C_{Total} = C_{free} + C_{bound} (1)$$

For each species, the following relationship holds for the Raman spectra

$$I_i = J_i C_i (2)$$

where I_i is the integrated band intensity, J_i is the molar scattering factor and C_i is the molar concentration of each species.

Combining both equations results in (3):

$$C_{\text{Total}} = \frac{I_{\text{free}}}{J_{\text{free}}} + \frac{I_{\text{bound}}}{J_{\text{bound}}} (3)$$

Equation 3 can be rearranged to (4)

$$\frac{I_{\text{bound}}}{C_{\text{Total}}} = J_{\text{bound}} - \frac{J_{\text{bound}}I_{\text{free}}}{J_{\text{free}}C_{\text{Total}}}$$
(4)

A plot of I_{bound}/C_{Total} against I_{Free}/C_{Total} leads to a straight line with an intercept equal to J_{bound} and a slope equal to $-J_{bound}/J_{Free}$. The plot is shown in Fig. S3.

Figure S2: Band component fitting in the CN Raman spectral region. Grey line represents χ MeCN = 0.757 + χ water = 0.243 (90%:10% v/v), red line represents χ MeCN = 0.257 + χ water = 0.743 (50%:50% v/v), and green line represents χ MeCN = 0.037 + χ water = 0.963 (10%:90% v/v).

 $I_{Associated}/C_{Total} = -0.06128 I_{free}/C_{Total} + 3.97841$ $R^2 = 0.99971$

Figure S3: Shurvell's plot corresponding to the integrated intensities of free and bound component of CN Raman stretching bands.

ESI2: Cyclic voltammetry of Pd-acetate

Figure S4 shows the first cycle of CVs recorded for Pd-acetate in various water containing MeCN solutions, for χ water (a) 0.243, (b) 0.743, and (c) 0.963, at a scan rate of 0.1 V s⁻¹ cycled from +1.0 V to -1.5 V and back to +1.5 V. In the negative direction scan, at χ water = 0.243, one reduction peak (R1) is observed, while increasing χ water leads to the emergence of a new reduction peak (R2) and a shift of R1 to more positive potentials. Electrodeposition was achieved by applying a defined overpotential, η , according to $\eta = E_{dep} - E_{ocp}$, where E_{dep} is the applied potential and E_{ocp} is the open circuit potential. E_{ocp} was treated as an estimate of the formal equilibrium potential, by recording OCP under conditions where a substantial amount of Pd had been electrodeposited on the electrode surface ($E_{dep} = -1.3$ V for 20 mins). Solution 1, $\eta = -1.50$ V – (-0.50 V) = -1.00 V, solution 2, $\eta = -1.45$ V – (-0.45 V) = -1.00 V, and solution 3, $\eta = -1.25$ V – (-0.25 V) = -1.00 V.

Figure S4: First cycle CVs for studying the electrochemical behaviour of Pd-acetate at v = 0.1 V/s (a) 90% MeCN:10% water v/v (χ water = 0.243), (b) 50% MeCN:50% water v/v (χ water = 0.743), (c) 10% MeCN:90% water v/v (χ water = 0.963).

ESI3: High resolution ADF-STEM of a Pd NP on the (110) surface of the BDD TEM electrode

At an electrodeposition potential of $\eta = -1$ V for $t_{dep} = 50$ s in the MeCN rich solution there is evidence of Pd NP epitaxial growth, Fig. S5. Assuming a parallel orientation, the theoretical lattice parameter for Pd is 3.8907 Å whilst that for diamond is 3.567 Å, resulting in a lattice mismatch of (3.8907-3.567)/3.8907=8.3%.

Figure S5: ADF-STEM of Pd NPs electrodeposited from 1×10^{-3} M Pd-acetate in (a) 90% MeCN:10% water v/v (χ water = 0.243) at an electrodeposition potential of η = -1 V for t_{dep} = 50 s. Scale bar = 3 nm.

ESI4: Statistical analysis summary for Pd nanostructures obtained via electrodeposition

Figure S6: Histogram summary analysis of the perimeter of Pd nanostructures electrodeposited using the following solutions; (a = solution 1) 90% *MeCN:10% water v/v* ($\chi water = 0.243$, (b = solution 2) 50% *MeCN:50% water v/v* ($\chi water = 0.743$), and (c = solution 3) 10% *MeCN:90% water v/v* ($\chi water = 0.963$). Perimeter values are extracted from the ADF-STEM images presented in Figures 2 and 5. Note: solution 3 led to two statistical distributions, (ci) represents the perimeter distribution for the NPs and nanostructures, and (cii) represents the perimeter distribution of the agglomerated nanostructures (nano-fractal like).

References:

- 1. D. D. Kragten, R. A. van Santen, M. K. Crawford, W. D. Provine and J. J. Lerou, *Inorganic Chemistry*, 1999, **38**, 331-339.
- 2. J. R. Reimers and L. E. Hall, *Journal of the American Chemical Society*, 1999, **121**, 3730-3744.
- 3. J. M. Alía and H. G. M. Edwards, *Vibrational Spectroscopy*, 2004, **34**, 225-230.