Supplementary Information

High Performance Complementary WS₂ Devices with Hybrid Gr/Ni Contacts

Muhammad Farooq Khan^{1†*}, Faisal Ahmed^{2,3†}, Shania Rehman¹, Imtisal Akhtar⁴, Malik Abdul Rehman⁵, Pragati A. Shinde⁵, Karim Khan^{6,7}, Deok-kee Kim¹, Jonghwa Eom⁸,

Harri Lipsanen² and Zhipei Sun²

¹Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Korea. ²Department of Electronics and Nanoengineering, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland. ³Department of Mechanical Engineering, College of Electrical and Mechanical Engineering, National University of Science and Technology, Islamabad 44000, Pakistan. ⁴Department of Mechanical Engineering, Chung-Ang University, Seoul, South Korea. ⁵School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea. ⁶School of Electrical Engineering & Intelligentization, Dongguan University of Technology (DGUT), Dongguan, 523808, Guangdong, China. ⁷Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China. ⁸Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPCIRC), Sejong University, Seoul 05006, Korea.

†These authors contributed equally to this work

*Corresponding email: mfk@sejong.ac.kr

- 1. Thickness of WS₂ flake
- 2. 8 nm thick WS_2 device results
- 3. Arrhenius plots of Ni and Gr/Ni contacted WS₂ device
- 4. Extraction of Contact Resistance
- 5. Comparative Table of WS₂ and MoS₂ based *p-n* junctions
- 6. Comparative table of photoresponsivity of WS_2 and MoS_2 based devices

1. Thickness of WS₂

Atomic force microscopy was employed to ascertain the thickness of WS_2 flakes. For given device, the topographic image of WS_2 flake was collected by scanning AFM in the square region of Figure S1(a) is shown in Figure S1(b). The height profile of the WS_2 flake is collected along the indicated path. Figure S1(c) represents that the WS_2 flake is ~14 nm thick.

Figure S1. Thickness of WS₂ flake: (a) is the OM image of the WS₂ back gate devices with the Ni and the hybrid Gr/Ni contacts. (b) AFM topographic image of the WS₂ flake as indicated by red box in (a). The blue line is the scanning path to obtain the thickness profile. (c) The obtained thickness profile WS₂ flake collected from the AFM image.

2. 8 nm thick WS₂ device data

Figure S2. 8 nm thick WS₂ device: (a) is the optical micrograph image of the 8 nm thick WS₂ devices with the Ni/Au and the hybrid Gr/Ni contacts. (b) The thickness profile of WS₂ flake obtained along the blue line shown in AFM image in inset. (c) & (d) are the transfer curves of the Ni-contacted WS₂ device and the Gr/Ni contacted WS₂ device at $V_D = 750$ meV. (e) The output curves of asymmetrically contacted WS₂ device. (f) The rectification ratio (ratio of forward bias current to reverse bias current) as a function of gate bias, measured from plots shown in (e) at $V_D = \pm 2$ V. Note that at same measurement conditions, the 8 nm thick WS₂ device shows higher rectification ratio as compared to 14 nm thick WS₂ device.

3. Arrhenius plots of Ni and Gr/Ni contacted WS₂ device

Figure S3. Arrhenius plots. The Arrhenius plots are extracted from the low temperature measurements at given back gate bias conditions. (a) for Ni contacted WS_2 device and (b) for Gr/Ni hybrid electrodes contacted WS_2 device. The decreasing slope of these curves gives the Schottky barrier height value for the corresponding interfaces, according to the equation (4) in main manuscript.

4. Extraction of Contact Resistance

Besides Schottky barrier height, contact resistance is another critical parameter to characterize the metal-semiconductor interface, and typically extracted by four-probe measurements or transfer length method. Given the two-probe geometry of our device, it is challenging to extract the contact R_c . However, the total device resistance in a device is comprised of channel resistance (R_{CH}) and twice of contact resistance (R_c). At large applied V_G , the carrier concentration in a device is increased. In result, the channel become highly conductive. In other words, R_{CH} becomes negligible, and the total device resistance approaches to the twice of R_c .¹ Using this scheme, we plotted the R_c for Ni-WS₂ and Gr/Ni-WS₂ interfaces from their respective transfer curves, as shown in Fig. S2. We understand that the measured R_c values are overestimated, and approaches to true value of R_c , as absolute value of V_G increases. Nonetheless, the V_G dependent plots follow the typical n-type and p-type trends for Ni-contacted and Gr/Ni contacted

WS₂ device.

Figure S4: Contact resistance. The contact resistance as a function of $V_{\rm G}$ for Ni-contacted and Gr/Ni contacted WS₂ device.

5. Comparative Table of WS₂ and MoS₂ based *pn* junctions

S. No	Materials	Device Structure	Thickness (nm)	Rectification ratio	Ideality Factor	Voc (V)	Ref
1	WS ₂	Hybrid contacts to WS ₂	14	10000	1.6	0.31	This work
2	BP / WS ₂	Planar heterostructure	7.6 / 9.5	26000	1.7	0.35	2
3	WS ₂ /MoS ₂	CVD grown Planar & Vertical Heterostructures	Monolayer/ Monolayer	100	NA	0.12	3
4	WS_2/MoS_2	Vertical Heterostructure	Multilayer/ Multilayer	10000	NA	0.25	4
5	WSe_2/WS_2	CVD grown Planar heterojunction	Multilayer	NA	NA	0.47	5
6	WS ₂ / ReSe ₂	Planar heterostructure	80 / 147	30	NA	NA	6
7	SnS / WS ₂	CVD grown Vertical Heterostructure	200 / 0.7	15	3.8	NA	7
8	Gr/WS ₂ /Gr	Vertical FET	3.5	1000000	NA	NA	8
9	WS ₂ /GaN	CVD grown WS ₂ Heterojunction (2D-3D)	400	> 100	NA	NA	9
10	WS ₂ /Si	Vertical heterostructure	54 / bulk	1000	NA	NA	10
11	MoS ₂	Vertical & Chemical doping	3	100	1.6	0.6	11
12	MoS ₂	Lateral Chemical doping	60	30	1	0.5	12
13	MoS ₂	Thickness offset	6.9 / 0.65	1000	1.95	NA	13

S. No	Materials	Wavelength (nm)	Optical Power (mWcm ⁻²)	Responsivity (A/W)	Ref				
1	14 nm WS ₂ -hybrid contacts	532	0.14	4×10 ⁴	This work				
2	14 nm WS ₂ -hybrid contacts	850	0.14	2×10 ⁴	This work				
3	6 nm WS ₂	458	2*	2.1×10 ⁻⁵	14				
4	42 nm WS ₂	633	30	5.7	15				
5	20 nm WS ₂	630	250	0.27	16				
6	Gr/WS ₂ /Gr (5~50-layer WS ₂)	633	10-6*	0.1	17				
7	Lateral WS ₂ /MoS ₂	633	141	1.42	4				
8	BP/WS ₂	600	1.2×10 ⁻⁶ *	0.5	2				
9	2L WS ₂ /graphene	532	2.7×10 ⁵	0.74	18				
10	0.65 nm MoS ₂	561	2.38×10 ⁵	880	19				
11	0.65 nm MoS ₂	532	8×10 ⁴	7.5×10 ³	20				
12	2 nm MoS ₂	532	2×10 ³	5.7×10-1	21				
13	MoS ₂ Chemical doping	500	-	5.07	12				
14	15-19 nmMoS ₂ pn junction	660	80	0.25	22				
15	4 nm/28 nm MoSe ₂ homojunction	635	14.4	550	23				
*units in Watt									

6. Comparative table of photoresponsivity of WS_2 and MoS_2 based devices

Reference:

- S1 N. Petrone, T. Chari, I. Meric, L. Wang, K. L. Shepard, J. Hone, T. Roy, M. Tosun, J. S. Kang, A. B. Sachid, S. B. Desai, M. Hettick, C. C. Hu and A. Javey, ACS Nano, 2014, 8, 6259–6264.
- S2 G. Dastgeer, M. F. Khan, G. Nazir, A. M. Afzal, S. Aftab, B. A. Naqvi, J. Cha, K.-A. Min,
 Y. Jamil, J. Jung, S. Hong and J. Eom, *ACS Appl. Mater. Interfaces*, 2018, 10, 13150–13157.
- S3 Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I.
 Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou
 and P. M. Ajayan, *Nat. Mater.*, 2014, 13, 1135–1142.
- S4 N. Huo, J. Kang, Z. Wei, S.-S. Li, J. Li and S.-H. Wei, *Adv. Funct. Mater.*, 2014, 24, 7025–7031.
- S5 X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A.
 Pan, J. Jiang, R. Yu, Y. Huang and X. Duan, *Nat. Nanotechnol.*, 2014, 9, 1024–1030.
- S6 C. Wang, S. Yang, W. Xiong, C. Xia, H. Cai, B. Chen, X. Wang, X. Zhang, Z. Wei, S. Tongay, J. Li and Q. Liu, *Phys. Chem. Chem. Phys.*, 2016, 18, 27750–27753.
- S7 A. Sukma Aji, M. Izumoto, K. Suenaga, K. Yamamoto, H. Nakashima and H. Ago, *Phys. Chem. Chem. Phys.*, 2018, 20, 889–897.
- S8 T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim,

A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K.
S. Novoselov and A. Mishchenko, *Nat. Nanotechnol.*, 2013, 8, 100–103.

- S9 Y. Yu, P. W. K. Fong, S. Wang and C. Surya, *Sci. Rep.*, 2016, **6**, 37833.
- S. Aftab, M. F. Khan, K.-A. Min, G. Nazir, A. M. Afzal, G. Dastgeer, I. Akhtar, Y. Seo, S.
 Hong and J. Eom, *Nanotechnology*, 2018, 29, 045201.
- S11 H.-M. Li, D. Lee, D. Qu, X. Liu, J. Ryu, A. Seabaugh and W. J. Yoo, *Nat. Commun.*, 2015, 6, 6564.
- M. S. Choi, D. Qu, D. Lee, X. Liu, K. Watanabe, T. Taniguchi and W. J. Yoo, *ACS Nano*, 2014, 8, 9332–9340.
- S13 M. Sun, D. Xie, Y. Sun, W. Li, C. Teng and J. Xu, *Sci. Rep.*, 2017, 7, 4505.
- N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng,
 R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones and
 M. Terrones, *Adv. Funct. Mater.*, 2013, 23, 5511–5517.
- S15 N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia and J. Li, Sci. Rep., 2015, 4, 5209.
- S. Hwan Lee, D. Lee, W. Sik Hwang, E. Hwang, D. Jena and W. Jong Yoo, *Appl. Phys. Lett.*, 2014, **104**, 193113.
- S17 L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim,
 R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C.
 Casiraghi, A. H. C. Neto and K. S. Novoselov, *Science (80-.).*, 2013, 340, 1311–1314.
- S18 H. Huang, Y. Sheng, Y. Zhou, Q. Zhang, L. Hou, T. Chen, R.-J. Chang and J. H. Warner, ACS Appl. Nano Mater., 2018, 1, 6874–6881.

- S19 O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, *Nat. Nanotechnol.*, 2013, 8, 497–501.
- S20 Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen and H. Zhang, ACS Nano, 2012, 6, 74–80.
- S21 D.-S. Tsai, K.-K. Liu, D.-H. Lien, M.-L. Tsai, C.-F. Kang, C.-A. Lin, L.-J. Li and J.-H.
 He, ACS Nano, 2013, 7, 3905–3911.
- S. A. Svatek, E. Antolin, D.-Y. Lin, R. Frisenda, C. Reuter, A. J. Molina-Mendoza, M. Muñoz, N. Agraït, T.-S. Ko, D. P. de Lara and A. Castellanos-Gomez, *J. Mater. Chem. C*, 2017, 5, 854–861.
- S23 Y. Yang, N. Huo and J. Li, J. Mater. Chem. C, 2017, 5, 7051–7056.