Supporting Information for Metal-organic Frameworks: Possible New Two-Dimensional Magnetic and Topological materials

Jie Li and Ruqian Wu*

Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA.

Fig. S1. Crystal structures of complexes of I - III.

Fig. S2. The schematic structure of the predicted 2D M-Hex- ${\rm I\!I}$.

Fig. S3. The lattice constants and spin magnetic moments of different TM-Hex- I / I lattices.

Fig. S4. (a)-(d) The phonon spectrum of Mn-Hex-I, Mn-Hex-II, Re-Hex-I and Os-Hex-I, respectively.

Fig. S5. (a)-(d) The relative total energy as function of time for Mn-Hex-I, Mn-Hex-II, Re-Hex-I and Os-Hex-I, respectively.

	V-Hex-	Mn-Hex-I	Fe-Hex-I	V-Hex-II	Mn-Hex-II	Fe-Hex-II
	Ι					
ΔE_{AFM-FM} (meV)	65.1	398.1	116.9	13.4	126.6	43.5
MAE(meV)	0.01	0.75	-0.23	0.006	0.86	-0.21
J_1	37.08	60.60	55.72	8.87	22.08	18.35
J_2	2.42	5.34	6.76	0.64	1.3	1.4

Table SI. The exchange energy, magnetocrystalline anisotropy energy and exchange parameters, J_i , of V(Mn, Fe)-Hex-I(II).

Fig. S6. (a)-(c) The schematic diagram of three different magnetic ordering (FM, AFM-I and AFM-II), respectively. Red and blue color represent spin up and spin down, respectively.

Fig. S7. (a) (b) The Fermi level dependent total and spin channel decomposed MAEs of Mn-Hex-I(II) from the rigid band model analyses.

Fig. S8. (a) (b)Top and side view of the partial charge density distribution around the Fermi level (-0.2-0.2eV, $l=0.0005e/Å^3$) of Mn-Hex-I (II), respectively.

Fig. S9. (a) and (c)The band structure and PDOS of zigzag and armchair Mn-Hex-I nanoribbon, respectively. (b) and (d) The corresponding transmission spectra at zero bias. The transmission coefficients under zero bias can be calculated from $T(E,V) = Tr[\Gamma_L(E)G^R(E)\Gamma_R(E)G^A(E)]$, with

Fig. S10. (Left) The PDOS of Mn-Hex-II. (Middle and Right) The band structures of Mn-Hex-II without and with SOC, respectively.

Fig. S11. (a) (b) The band structure and PDOS of Os-Hex-I without SOC of Os atoms and without SOC of C and S atoms, respectively.

Fig. S12. (a) (b) The band structure (without and with SOC) and corresponding n-field configuration of Re-Hex-I, respectively.

Fig. S13. The band structure of Os-Hex-I from DFT and the maximally localized Wannier functions calculations, respectively.