A High-throughput Assessing of Adsorption Capacity and Li-ion Diffusion

Dynamics in Mo Based Ordered Double-Transition-Metal MXenes as Anode

Materials for Fast Charging LIBs

Hangyu Wang^a, Ziang Jing^a, Haoliang Liu^a, Xianghui Feng^a, Guodong Meng^a,

Kai Wu^a, Yonghong Cheng^a, Bing Xiao*^a

a. School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China

Corresponding Author: bingxiao84@xjtu.edu.cn

Figure S1. The total energies of Mo-based MXenes with surface functional groups T (H, O, F, and OH) at different adsorption sites. The most stable adsorption structures and associated total cell energies are highlighted in rectangular box by the red-bashed lines.

Figure S2. The bond population of (a) M-C and (b) Mo-C in Mo₂MC₂ and Mo₂MC₂T₂ (M = Sc, Ti, V, Zr, Nb, Hf, Ta, T = H, O, F, OH).

Figure S3. The snapshots of -OH functionalized MXenes placed in between two bulk Li metals in FPMD simulations at 200 K: (a) Mo₂ScC₂ and (b) Mo₂TiC₂.

Figure S4. The top and side view of initial sandwich structures of (a) Mo₂MC₂, (b) Mo₂MC₂H₂, (c) Mo₂MC₂O₂, (d) Mo₂MC₂F₂ and the crystalographic plane (111) of bulk Li metal (BCC).

Figure S5. Average open circuit voltage and theoretical capacity of Li saturated adsorption structures of Mo_2MC_2 and $Mo_2MC_2T_2$ (M stands for transition metal, and T = H, and O). The red box area indicates an optimal active voltage window and with storage capacity greater than 180 mAh/g.

$\frac{Mo_2ScC_2}{Mo_2TiC_2} \frac{Mo_2VC_2}{Mo_2ZrC_2} \frac{Mo_2NbC_2}{Mo_2HfC_2} \frac{Mo_2TaC_2}{Mo_2TaC_2}$						-63 ^{lat}		
Bare	6.110	5.985	5.933	6.203	6.130	6.128	6.085	6.2 for the formation of the formation o
T = H	6.137	5.993	5.934	6.218	6.136	6.147	6.104	6.1 ^{Li-satura}
T = O	5.935	5.890	5.833	6.052	5.999	6.018	5.995	5.9 Senes
								_2.8

Figure S6. Planar lattice constants of 2×2×1 supercell model of Mo₂MC₂, Mo₂MC₂H₂ and Mo₂MC₂O₂ (M = Sc, Ti, V, Zr, Nb, Hf, Ta) with full Li adsorbed.

Figure S7. Diffusion energy profiles of Li-ion for Mo_2MC_2 and $Mo_2MC_2T_2$ (M = Sc, Ti, V, Zr, Nb, Hf, Ta, and T = H, O) MXenes, calculated using a 2×2×1 supercell model.

Figure S8. Formation energy of a Li vacancy in saturated adsorption structures (Mo₂MC₂)₄Li₈ and (Mo₂MC₂T₂)₄Li₈ (T = H, O).

Figure S9. The phonon eigenvector of the soft mode at Γ -point for lithium atom at the saddle point. The direction of the vibration is the same as that of the diffusion.

Figure S10. Calculated phonon band vibrational spectra of Li- $(Mo_2MC_2)_4$ (M = Sc, Ti, V, Zr, Nb, Hf, Ta) at the global energy minimum, the saddle-point, and metastable state on the diffusion pathways. Soft modes are displayed as the horizontal lines below 0 THz for all structure at saddle-point.

Figure S11. (a) Top view and (b) side view of the migration pathway of Li atom from FPMD simulation for Mo₂TiC₂ monolayer at 400K.

 $\label{eq:stablest} \textbf{Table S1}. \hspace{0.5cm} \text{The adsorption energies } E_{ab} \text{ of Li atoms on } Mo_2ScC_2 \text{ and } Mo_2ScC_2T_2 \text{ with spin-polarized and non-spin-polarized calculations}.$

	Adsorption energy (eV/cell)			
	Spin-polarized	Non-spin-polarized		
Mo ₂ ScC ₂	-0.74	-0.74		
Mo ₂ ScC ₂ H ₂	-0.438	-0.440		
Mo ₂ ScC ₂ O ₂	-3.05	-3.05		
$Mo_2ScC_2F_2$	-0.158	-0.159		
Mo ₂ ScC ₂ (OH) ₂	0.66	0.66		

Table S2. The bond lengths of Mo-C and C-M bonds for embedded MXene layers in between two overlayers after FPMD simulations $((Mo_2MC_2F_2)_{12}Li_{48}).$

	d _{мо-с} (Å)	d _{с-м} (Å)	d _{Mo-F} (Å)
$Mo_2ScC_2F_2$	2.15	2.28	3.63
Mo ₂ TiC ₂ F ₂	2.13	2.16	3.72
$Mo_2VC_2F_2$	2.09	2.07	3.86
$Mo_2ZrC_2F_2$	2.20	2.38	-
$Mo_2NbC_2F_2$	2.09	2.25	-
$Mo_2HfC_2F_2$	2.11	2.25	-
Mo ₂ TaC ₂ F ₂	2.10	2.17	3.37

Table S3. The soft mode frequencies, diffusion barrier heights and corresponding diffusion coefficient obtained from TST+DFPT method,based on CI-NEB migration pathways for all intrinsic MXenes.

	Virtual frequency	Barrier height	Diffusion coefficient	
	(THz)	(eV)	(m²/s)	
Mo ₂ ScC ₂	-2.678	0.055	2.54×10 ⁻⁸	
Mo ₂ TiC ₂	-2.466	0.043	3.14×10 ⁻⁸	
Mo ₂ VC ₂	-2.582	0.034	4.25×10 ⁻⁸	
Mo ₂ ZrC ₂	-2.639	0.049	2.46×10 ⁻⁸	
Mo ₂ NbC ₂	-2.646	0.036	4.36×10 ⁻⁸	
Mo_2HfC_2	-2.508	0.052	2.60×10 ⁻⁸	
Mo ₂ TaC ₂	-2.598	0.033	4.42×10 ⁻⁸	

Table S4. Comparison of diffusion coefficients of Li atoms calculated for Mo₂MC₂ (M = Sc, Ti, V) at 400K using TST+DFPT and FPMD simulations.

	Diffusion coefficient (m ² /s)			
	Mo ₂ ScC ₂	Mo ₂ TiC ₂	Mo ₂ VC ₂	
TST analysis	4.21×10 ⁻⁸	4.35×10 ⁻⁸	5.70×10 ⁻⁸	
FPMD	6.36×10 ⁻⁹	2.70×10 ⁻⁹	9.77×10 ⁻⁹	