Supporting Information

Nanostructured monoclinic Cu₂Se as near-room-temperature thermoelectric materials

Jie Chen,^a Taoyi Liu,^a Deyu Bao,^a Bin Zhang,^b Guang Han,^c Can Liu,^a Jun Tang,^d Dali Zhou,^{a*} Lei Yang,^{a*} Zhi-Gang Chen^{e,f}

^a School of Materials Science & Engineering, Sichuan University, Chengdu 610064,
China

^b Analytical and Testing Center, Chongqing University, Chongqing 401331, China

^c College of Materials Science and Engineering, Chongqing University, Chongqing,
400044, China

^d Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China

^e Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia

^f School of Mechanical and Mining Engineering, University of Queensland, St Luica, Queensland 4072, Australia

Figure S1. SEM images of the as-prepared nano β -Cu₂Se powders.

Figure S2. The measured C_p as a function of *T* compared with the Dulong-Petit value, which shows that the Dulong-Petit value can well describe the C_p of our sample before phase transition temperature.

Calculation details of Debye-Callaway model:

The relevant phonon relaxation times are given by:

Umklapp processes

$$\tau_{\rm U}^{-1} = AT \exp(-\theta_{\rm D} / 3T)\omega^2 \qquad {\rm NERGEFORMAT}(1)$$

Grain boundary scattering

$$\tau_{\rm B}^{-1} = \frac{\nu}{L}$$
 * MERGEFORMAT (2)

Point defect scattering

$$\tau_{\rm PD}^{-1} = \frac{V\Gamma}{4\pi v^3} \omega^4 \qquad \qquad \land * \text{ MERGEFORMAT (3)}$$

Phonon resonance scattering

$$\tau_{\rm PR}^{-1} = \sum_{i} \frac{C_i \omega^2}{\left(\omega_i^2 - \omega^2\right)^2} \qquad \qquad \land * \text{ MERGEFORMAT (4)}$$

In the above equations, A is the fitted parameter in Umklapp processes, L is the grain size, $\overline{V} = 10^{-6} M / (D_T N_A n)$ is the average atomic volume (where M is the relative molecular mass, D_T is the theoretical density, N_A is the Avogadro constant, n is the number of atoms in a molecular formula), Γ is the point defect scattering parameter (fitted), C_i is the fitted parameters in phonon resonance scattering, ω_i is the resonant phonon frequency.

In this work for our nano Cu₂Se, A = 6.5×10^{-17} s K⁻¹ (fitted), L = 45 nm, M = 206.052 g mol⁻¹, $D_{\rm T} = 6.749$ g cm⁻³, n = 3, $\Gamma = 0.3765$ (fitted), v, $\theta_{\rm D}$, and parameters in

phonon resonance scattering are taken from the reference.¹

Reference

 H. L. Liu, J. Yang, X. Shi, S. A. Danilkin, D. H. Yu, C. Wang, W. Q. Zhang and L. D. Chen, *J. Materiomics*, 2016, 2, 187-195.