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1 Estimation of the Free-Energy Error

The error on a derived observable O = O(s), with s the variable that is directly measured, is

usually obtained by error propagation:

δO2 =

(
dO

ds
δs

)2

(1)

where δs2 and δO2 are the variances of s and the estimated variance of O, respectively. δO

obtained by error propagation is an upper bound of the actual error of the derived observable.

In free energy calculations via RMD or similar techniques, in which the free energy G(z)

is obtained by numerical integration of the mean force dG/dN , Eq. [??], error propagation

brings to a severe overestimation of the error on G(z):

δG(zj)
2 =

∑
i=1,j

δG′(zi)2 + δG′(zi−1)2

2
(zi − zi−1)2 (2)

Here, like in previous works,1–6 we use a different approach. We divide the configurations

used to estimate dG(z)/dz in M smaller sets from which we obtain the corresponding

estimates of the mean force {dGi(z)/dz}i=1,M . Frome these, by numerical integration, one

obtains a set of free energy curves {Gi(z)}1=1,M that can be used to directly compute the

variance δGi(z)2 at each value of z :

δGi(z)2 = 1/(M − 1)
∑
i=1,M

(Gi(z)−G(z))2 , (3)

where G(z) = 1/M
∑

i=1,M Gi(z) is the free energy computed with the complete set of

atomistic configurations. Then, one can obtain the error on G(z), taking properly into

account correlation effects, using either the block average or the Jackknife method.7
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2 The Tan-An-Ohl local oversaturation theory of nanobub-

bles’ stability

The Tan-An-Ohl local oversaturation theory of nanobubbles’ stability8 is an extension of the

Lohse and Zhang pinning-oversaturation theory9. Eq.[1], the key result of the Tan-An-Ohl

theory, is obtained starting from the evolution equation for a dissolving pinned surface

nanobubble in a liquid. This problem is analogous to that of an evaporating droplet of liquid,

whose exact solution given by Popov10 has been adapted by Lohse and Zhang9 to the case of

a dissolving spherical cap pinned nanobuble. Lohse and Zhang have obtained the rate of mass

change in the hypothesis that the oversaturation ζ is constant through the liquid. By setting

the rate of mass change to zero, one obtains the stationarity condition. Tan, An e Ohl.8

have waived the condition that ζ is constant through the liquid, and Eq. [??] represents the

stationarity condition for a surface nanobubble if the oversaturation depends on the distance

from the solid substrate, ζ(z).
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3 Relation between force field parameters and gas sol-

ubility

Following ref.11, dissolving a gas in a liquid consisting of two steps: i) creation of a liquid

cavity that accommodates a gas molecule and ii) introduction of a gas molecule into the

cavity. After its introduction into the cavity, the gas molecule interacts with the surrounding

solvent. For very dilute solutions, like air dissolved in water, one can show that: RT logKH =

Gc +Gi +RT log(RT/V 0
s ); KH is the Henry’s law constant, which relates the amount of gas

dissolved in the solvent and its partial pressure: to a higher value of KH corresponds a higher

gas solubility; Gc and Gi are the molar free energies for forming a cavity of prescribed size and

inserting a molecule in the cavity, corresponding to steps ‘i’ and ‘ii’ of the process outlined

above; finally, V 0
s is the molar volume of the solvent and R is the gas constant. Following

Reiss et al 12, Gc depends on the characteristic size σs of the solvent and solute molecules,

which does not change, while Gi depends on the characteristic energy, ε, which we increase

of a factor 3. Considering that Gi = −3.555π ρRσ3 ε /kB
11, where ρ is the solvent number

density and kB is the Boltzmann constant, the ratio between the Henry’s law constants of

two solutions differing in the characteristic interaction energy between the solvent and solute

by ∆ε = ε′ − ε′′ is K ′H/K
′′
H = exp[−3.555π ρRσ3 ∆ε /kB]
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Figure ESI1: To compute the Young contact angle of a surface we deposit a cylindrical water
droplet on it, thermalize the system and subsequently compute the average (discretized)
density field. From the density field we can identify the Gibbs dividing surface, i.e. the
density isosurface with a value halfway between bulk liquid water and vapor. We then fit
this surface with a circumference and compute the corresponding tangent formed with the
graphite slab. In the panels of this figure we show the density field, Gibbs dividing surface
and tangent of three droplets with a Young contact angle of 70◦ (top), 90◦ (central) and 110◦

(bottom).
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Figure ESI2: Young contact angle θY vs the scaling parameter c. The calculations show that
there is a linear relation between θY and c over a wide range enclosing the one spanned in
our simulations, [70◦, 110◦]. From the linear fitting of simulation data one can determine the
value of c necessary to model a solid with a prescribed value of θY .
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Figure ESI3: Nitrogen-oxygen pair correlation function of an N2 molecule in bulk water
(black) and the corresponding integral, i.e. the number of water molecules within a distance
r from N2 (blue). The dotted line corresponds to 50 nearest neighbor water molecules and is
shown to help the reader to appreciate the radius of the shell enclosing the number of water
molecules per N2 at the maximum local oversaturation for a ζ = 0 bulk.
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Figure ESI4: A) Free energy G(z) as a function of the distance of the center of mass of the
O2 molecule from the graphite-like surface. In the figure, G(z) is reported for several values
of hydrophilicity/hydrophobicity of the surface together with the case without water, i.e.
when the sample consists only of the graphite-like slab and O2. One notices that the profiles
are very similar to the N2 case reported in the main text. B) Supersaturation of O2 as a
function of the distance from the surface.
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