### **Supplementary Information for:**

# Structure and Activity Relationship for Single-Walled Carbon Nanotube Growth Confirmed by In-Situ observations and Modeling

Hsin-Yun Chao<sup>1,2</sup>, Hua Jiang<sup>3</sup>, Francisco Ospina Acevedo<sup>4</sup>, Perla B. Balbuena<sup>4</sup>, Esko I. Kauppinen,<sup>3</sup> John Cumings<sup>1</sup> and Renu Sharma<sup>2\*</sup>

 <sup>1.</sup> Materials Science and Engineering, University of Maryland, College Park, MD, United States.
 <sup>2.</sup> Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States.
 <sup>3.</sup> Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
 <sup>4.</sup> Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States

\* To whom correspondence should be addressed. E-mail: renu.sharma@nist.gov

#### This Document includes:

EELS Identification Structure Identification Catalyst Nanoparticle Data Computational Details Movie Descriptions

**Other Supplementary Materials for this manuscript includes the following:** Movie S1, S2, S3, S4, S5

#### **1. EELS Identification**

Electron energy loss spectroscopy (EELS) was used to determine the presence of Co nanoparticles and the MgO support. An EELS map (Fig. S1) was acquired at room temperature with no gases inside the specimen chamber after cleaning the sample by heating in 300 Pa of oxygen at 900 C for 30 minutes. Isolated nanoparticles containing Co are shown in red (Fig. S1b)), while the Mg and O regions, forming MgO support, are in blue and green, respectively. Zero loss peak, acquired concurrently with core-loss data, was used to calibrate the spectra<sup>1</sup>. Deconvoluted and background subtracted EELS spectrum confirm the existence of Co with characteristic L<sub>3</sub> and L<sub>2</sub> peaks at 784.44  $\pm$  0.54 eV and 800.06  $\pm$  0.11 eV, respectively (Fig. S1c)). The chemical state of Co-based nanoparticles was then determined by comparing the onset edge and characteristic peak positions to known structures as described by Egerton<sup>2</sup>. Our measured values closely match peak positions of the CoO phase<sup>3</sup> (Table S1).



**Fig. S1** EELS performed inside the TEM surveying catalyst and support. Image in a) is at 160 kx magnification and 80 kV and in STEM mode. Green box labelled Spectrum Image is where the energy spectrum is measured. The beam location and area to account for spatial drift are also designated. The EELS spectrum is shown in b), where Co is highlighted in red, and the Mg and O peaks are blue and green, respectively. EELS Spectrum in c) is extracted from Co-rich region marked by an arrow in b) and shows the Co-L<sub>3</sub> and Co-L<sub>2</sub> peaks.

**Table S1** Energy loss peak positions of Co-L<sub>3</sub> ( $E_{L3}$ ) and Co-L<sub>2</sub> ( $E_{L2}$ ) for Co nanoparticles compared to the reported values.<sup>3</sup>

|                                | $E_{L3} (eV)$     | $E_{L2} (eV)$     | Ref.      |
|--------------------------------|-------------------|-------------------|-----------|
| Metallic Co                    | 781               | 796.5             |           |
| CoO                            | 785.5             | 801.5             | [3]       |
| Co <sub>3</sub> O <sub>4</sub> | 787               | 802.5             |           |
| Nanoparticles measured         | $784.44 \pm 0.54$ | $800.06 \pm 0.11$ | This work |
| % Diff. from CoO               | 0.14%             | 0.18%             |           |

#### 2. Structure Identification

The algorithm, CrystalBall<sup>4</sup>, was used to determine the phases and associated planes from the Fast Fourier Transform (FFT) data. Experimentally obtained d-spacings and angles were matched with reference phases in literature<sup>5–7</sup> containing Co, O, Mg, and C. Initially, CrystalBall matches the measured phase with the reference phases and outputs close matches within a certain specified error. Subsequently, the algorithm takes these close matches and matches them with the reference angles to find a close match within that, determining the possible Miller planes within the phase. Finally, the program outputs the closest matching zone axis that best corresponds with the previous parameters.

The d-spacings and angles are each matched using the smallest possible error, which are then gradually increased if no fit is found within the error range. If there are multiple possible fits with a certain error, the data is reviewed and the smallest overall percentage error of both d-spacings and angles is determined to be the correct phase and associated Miller planes. In some cases, both Co<sub>2</sub>C and Co<sub>3</sub>C match a particular nanoparticle, but the correct phase is the one phase with uniformly less error. Table S2 is one example of this. All the nanoparticle information measured and processed this are tabulated in the Table S3, S4, and S5.

| <b>Table S2</b> An example of one nanoparticle's measured d-spacing and angle that matches both                                       |
|---------------------------------------------------------------------------------------------------------------------------------------|
| Co <sub>2</sub> C and Co <sub>3</sub> C structures. The Co <sub>2</sub> C structure has an overall lower error value and is therefore |
| determined to be the correct phase.                                                                                                   |

| Matching          | Measured  | Reference | Error | Miller  | Angle      | Reference | Error | Zone Axis |
|-------------------|-----------|-----------|-------|---------|------------|-----------|-------|-----------|
| Structure         | d-Spacing | d-Spacing | (%)   | Plane   | Between    | Angle     | (%)   |           |
|                   | (nm)      | (nm)      |       |         | Planes (°) | (°)       |       |           |
| Co <sub>2</sub> C | 0.2264    | 0.2213    | 2.305 | (0 2 0) | 58.40      | 56.676    | 3.042 | [100]     |

|                   | 0.2554 | 0.2432 | 5.038 | (0 1 1)  | 69.43  | 66.648  | 4.009 |          |
|-------------------|--------|--------|-------|----------|--------|---------|-------|----------|
|                   | 0.2395 | 0.2432 | 1.501 | (0 -1 1) | 127.72 | 123.324 | 3.565 |          |
| Co <sub>3</sub> C | 0.2264 | 0.2379 | 4.822 | (1 2 1)  | 58.40  | 55.96   | 4.36  | [0 -1 2] |
|                   | 0.2554 | 0.2379 | 7.370 | (-1 2 1) | 69.32  | 62.02   | 11.77 |          |
|                   | 0.2395 | 0.2535 | 5.523 | (-2 0 0) | 127.72 | 117.98  | 8.256 |          |

# 3. Catalyst Nanoparticle Data

Presented are measured and reference structures of the nanoparticles measured and included in the analysis. The corresponding matching structure and Miller planes of each nanoparticle are reported along with the percentage error of each structure's measured d-spacing and angle. Table S3 reports active catalysts, Table S4 reports deactivated catalysts, and Table S5 reports inactive catalysts.

| Table S3 Obtained structure and data of active catalysts. |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

|   | Matching<br>Structure | Measured<br>d-Spacing<br>(nm) | Reference<br>d-Spacing<br>(nm) | Error<br>(%) | Miller<br>Plane | Angle<br>Between<br>Planes (°) | Reference<br>Angle (°) | Error<br>(%) | Zone<br>Axis |
|---|-----------------------|-------------------------------|--------------------------------|--------------|-----------------|--------------------------------|------------------------|--------------|--------------|
| 1 | Co <sub>2</sub> C     | 0.2177                        | 0.2213                         | 1.627        | (020)           | 51.36                          | 56.676                 | 9.38         | [100]        |
|   |                       | 0.2362                        | 0.2432                         | 2.858        | (011)           | 75.18                          | 66.648                 | 12.801       |              |
|   |                       | 0.2389                        | 0.2432                         | 1.748        | (0-11)          | 126.54                         | 123.324                | 2.608        |              |
|   |                       |                               |                                |              |                 |                                |                        |              |              |
| 2 | Co <sub>2</sub> C     | 0.2345                        | 0.2439                         | 3.838        | (101)           | 109.56                         | 113.859                | 3.776        | [0 1 0]      |
|   |                       | 0.2328                        | 0.2439                         | 4.535        | (10-1)          |                                |                        |              |              |
|   |                       |                               |                                |              |                 |                                |                        |              |              |
| 3 | Co <sub>2</sub> C     | 0.2141                        | 0.2185                         | 2.027        | (002)           | 91.66                          | 90                     | 1.844        | [100]        |
|   |                       | 0.2203                        | 0.2223                         | 0.913        | (020)           |                                |                        |              |              |
|   |                       |                               |                                |              |                 |                                |                        |              |              |
| 4 | Co <sub>2</sub> C     | 0.2771                        | 0.2427                         | 14.164       | (110)           | 71.35                          | 66.169                 | 7.831        | [0 0 1]      |
|   |                       | 0.2545                        | 0.2427                         | 4.853        | (1-10)          |                                |                        |              |              |
|   |                       |                               |                                |              |                 |                                |                        |              |              |

| 5  | Co <sub>2</sub> C | 0.2234 | 0.2213 | 0.949 | (020)    | 57.77  | 56.676  | 1.93  | [100]   |
|----|-------------------|--------|--------|-------|----------|--------|---------|-------|---------|
|    |                   | 0.2234 | 0.2432 | 8.123 | (011)    | 69.94  | 66.648  | 4.939 |         |
|    |                   | 0.2436 | 0.2432 | 0.185 | (0-11)   | 127.71 | 123.324 | 3.556 |         |
|    |                   |        |        |       |          |        |         |       |         |
| 6  | Co <sub>2</sub> C | 0.2342 | 0.2213 | 5.829 | (020)    | 126.23 | 123.324 | 2.356 | [100]   |
|    |                   | 0.2342 | 0.2432 | 3.681 | (0 -1 1) |        |         |       |         |
|    |                   |        |        |       |          |        |         |       |         |
| 7  | Co <sub>2</sub> C | 0.2303 | 0.2223 | 3.585 | (020)    | 58.67  | 56.916  | 3.082 | [0 0 1] |
|    |                   | 0.2502 | 0.2427 | 3.082 | (110)    | 67.9   | 66.169  | 2.617 |         |
|    |                   | 0.2499 | 0.2427 | 2.958 | (1-10)   | 126.57 | 123.084 | 2.832 |         |
|    |                   |        |        |       |          |        |         |       |         |
| 8  | Co <sub>2</sub> C | 0.216  | 0.2185 | 1.158 | (002)    | 57.03  | 56.464  | 1.003 | [0 1 0] |
|    |                   | 0.2502 | 0.2415 | 3.615 | (101)    | 72.49  | 67.073  | 8.077 |         |
|    |                   | 0.242  | 0.2415 | 0.219 | (10-1)   | 129.52 | 123.536 | 4.844 |         |
|    |                   |        |        |       |          |        |         |       |         |
| 9  | Co <sub>2</sub> C | 0.2264 | 0.2213 | 2.305 | (020)    | 58.4   | 56.676  | 3.042 | [100]   |
|    |                   | 0.2554 | 0.2432 | 5.038 | (011)    | 69.32  | 66.648  | 4.009 |         |
|    |                   | 0.2395 | 0.2432 | 1.501 | (0 -1 1) | 127.72 | 123.324 | 3.565 |         |
|    |                   |        |        |       |          |        |         |       |         |
| 10 | Co <sub>2</sub> C | 0.2279 | 0.2213 | 2.982 | (020)    | 57.44  | 56.676  | 1.348 | [100]   |
|    |                   | 0.2581 | 0.2432 | 6.148 | (011)    | 69.52  | 66.648  | 4.309 |         |
|    |                   | 0.251  | 0.2432 | 3.228 | (0 -1 1) | 126.96 | 123.324 | 2.948 |         |
|    |                   |        |        |       |          |        |         |       |         |
| 11 | Co <sub>2</sub> C | 0.2086 | 0.2213 | 5.739 | (020)    | 52.7   | 56.676  | 7.015 | [100]   |
|    |                   | 0.2373 | 0.2432 | 2.406 | (011)    | 69.19  | 66.648  | 3.814 |         |
|    |                   | 0.2507 | 0.2432 | 3.105 | (0 -1 1) | 121.89 | 123.324 | 1.163 |         |
|    |                   |        |        |       |          |        |         |       |         |

 Table S4
 Obtained structure and data of deactivated nanoparticles.

|   |                   |           |           |       |        | Angle   |           |       |         |
|---|-------------------|-----------|-----------|-------|--------|---------|-----------|-------|---------|
|   |                   | Measured  | Reference |       |        | Between |           |       |         |
|   | Matching          | d-Spacing | d-Spacing | Error | Miller | Planes  | Reference | Error | Zone    |
|   | Structure         | (nm)      | (nm)      | (%)   | Plane  | (°)     | Angle (°) | (%)   | Axis    |
| 1 | Co <sub>3</sub> C | 0.2344    | 0.2265    | 3.488 | (002)  | 62.48   | 60.769    | 2.816 | [0 1 0] |
|   |                   | 0.2188    | 0.2212    | 1.094 | (201)  | 56.3    | 58.463    | 3.7   |         |
|   |                   | 0.2164    | 0.2212    | 2.179 | (20-1) | 118.78  | 119.231   | 0.379 |         |
|   |                   |           |           |       |        |         |           |       |         |
| 2 | Co₃C              | 0.2188    | 0.2102    | 4.086 | (211)  | 69.4    | 68.198    | 1.762 | [0-1 1] |
|   |                   | 0.2221    | 0.2102    | 5.656 | (2-11) | 55.9    | 55.901    | 0.001 |         |

|   |                   | 0.198  | 0.1875 | 5.617  | (022)     | 125.3  | 124.099 | 0.968  |           |
|---|-------------------|--------|--------|--------|-----------|--------|---------|--------|-----------|
| 3 | Co <sub>2</sub> C | 0.2678 | 0.2439 | 9.817  | (101)     | 51.77  | 56.93   | 9.063  | [0 1 0]   |
|   |                   | 0.2138 | 0.2235 | 4.319  | (200)     |        |         |        |           |
| 4 | Co <sub>3</sub> C | 0.2812 | 0.3016 | 6.773  | (111)     | 71.02  | 67.035  | 5.945  | [-1 -2 3] |
|   |                   | 0.258  | 0.2379 | 8.463  | (-121)    | 52.19  | 46.364  | 12.566 |           |
|   |                   | 0.227  | 0.2371 | 4.26   | (-210)    | 123.21 | 113.399 | 8.652  |           |
|   |                   |        |        |        |           |        |         |        |           |
| 5 | Co₃C              | 0.2824 | 0.3016 | 6.375  | (111)     | 76.01  | 83.496  | 8.966  | [-1 1 0]  |
|   |                   | 0.2763 | 0.3016 | 8.398  | (11-1)    | 55.15  | 48.252  | 14.296 |           |
|   |                   | 0.2339 | 0.2265 | 3.267  | (002)     | 131.16 | 131.748 | 0.446  |           |
|   |                   |        |        |        |           |        |         |        |           |
| 6 | Co₃C              | 0.2043 | 0.2026 | 0.829  | (220)     | 107.19 | 105.915 | 1.204  | [0 0 1]   |
|   |                   | 0.1958 | 0.2026 | 3.366  | (-220)    |        |         |        |           |
|   |                   |        |        |        |           |        |         |        |           |
| 7 | Co₃C              | 0.2954 | 0.3016 | 2.059  | (111)     | 49.98  | 56.714  | 11.873 | [0-1 1]   |
|   |                   | 0.1963 | 0.1759 | 11.617 | (-1 2 2)  | 54.3   | 69.733  | 22.131 |           |
|   |                   | 0.2622 | 0.2538 | 3.289  | (-2 0 0)  | 104.28 | 126.447 | 17.53  |           |
|   |                   |        |        |        |           |        |         |        |           |
| 8 | Co₃C              | 0.334  | 0.3016 | 10.732 | (111)     | 50.7   | 63.243  | 19.834 | [-1 0 1]  |
|   |                   | 0.3152 | 0.335  | 5.91   | (020)     | 69.34  | 63.243  | 9.64   |           |
|   |                   | 0.3109 | 0.3016 | 3.073  | (-1 1 -1) | 120.04 | 126.487 | 5.097  |           |
|   |                   |        |        |        |           |        |         |        |           |
| 9 | Co₃C              | 0.2035 | 0.2101 | 3.123  | (211)     | 55.02  | 55.961  | 1.681  | [011]     |
|   |                   | 0.1812 | 0.1876 | 3.432  | (022)     | 53.77  | 55.961  | 3.915  |           |
|   |                   | 0.2205 | 0.2101 | 4.97   | (-2 1 1)  | 108.79 | 111.921 | 2.798  |           |

 Table S5
 Obtained structure and data of inactive nanoparticles.

|   |                   | Measured  | Reference |        |           | Angle      |           |        |           |
|---|-------------------|-----------|-----------|--------|-----------|------------|-----------|--------|-----------|
|   | Matching          | d-Spacing | d-Spacing | Error  | Miller    | Between    | Reference | Error  |           |
|   | Structure         | (nm)      | (nm)      | (%)    | Plane     | Planes (°) | Angle (°) | (%)    | Zone Axis |
| 1 | Co <sub>3</sub> C | 0.252     | 0.2382    | 5.785  | (121)     | 57.73      | 58.164    | 0.746  | [-2 1 0]  |
|   |                   | 0.2161    | 0.2258    | 4.296  | (002)     | 52.91      | 58.164    | 9.033  |           |
|   |                   | 0.2515    | 0.2382    | 5.575  | (-1 -2 1) | 110.64     | 116.328   | 4.889  |           |
|   |                   |           |           |        |           |            |           |        |           |
| 2 | Co₃C              | 0.334     | 0.3016    | 10.732 | (111)     | 50.7       | 63.243    | 19.834 | [-1 0 1]  |
|   |                   | 0.3152    | 0.335     | 5.91   | (020)     | 69.34      | 63.243    | 9.64   |           |
|   |                   | 0.3109    | 0.3016    | 3.073  | (-1 1 -1) | 120.04     | 126.487   | 5.097  |           |

| 3 | Co <sub>2</sub> C | 0.205  | 0.2213 | 7.366 | (020)     | 53.41  | 56.676  | 5.762  | [100]   |
|---|-------------------|--------|--------|-------|-----------|--------|---------|--------|---------|
|   |                   | 0.2418 | 0.2432 | 0.555 | (0 -1 1)  | 73.63  | 66.648  | 10.476 |         |
|   |                   | 0.2455 | 0.2432 | 0.966 | (011)     | 127.04 | 123.324 | 3.013  |         |
|   |                   |        |        |       |           |        |         |        |         |
| 4 | Co₃C              | 0.1936 | 0.1868 | 3.662 | (131)     | 54.74  | 50.549  | 8.29   | [1-25]  |
|   |                   | 0.2317 | 0.2382 | 2.737 | (-1 2 1)  | 73.64  | 79.109  | 6.913  |         |
|   |                   | 0.233  | 0.2375 | 1.895 | (-2 -1 0) | 128.38 | 129.659 | 0.986  |         |
|   |                   |        |        |       |           |        |         |        |         |
| 5 | Co₃C              | 0.2105 | 0.2068 | 1.789 | (102)     | 41.1   | 48.145  | 14.633 | [0 1 0] |
|   |                   | 0.2131 | 0.2068 | 3.046 | (-1 0 2)  | 41.27  | 36.696  | 12.465 |         |
|   |                   | 0.2091 | 0.2212 | 5.479 | (-2 0 1)  | 82.37  | 84.841  | 2.913  |         |
|   |                   |        |        |       |           |        |         |        |         |
| 6 | Co₃C              | 0.1317 | 0.1349 | 2.358 | (042)     | 87.93  | 90      | 2.3    | [0-1 2] |
|   |                   | 0.2647 | 0.238  | 4.274 | (200)     | 57.89  | 62.017  | 6.655  |         |
|   |                   | 0.2316 | 0.2382 | 2.779 | (1 -2 -1) | 145.82 | 152.017 | 4.077  |         |

### 4. Computational Details

For both Co<sub>2</sub>C and Co<sub>3</sub>C, the surfaces were obtained by cleaving the initial structure of the carbide along the planes observed experimentally, obtaining the different surface chemistries (i.e. the C, Co, or C/Co termination in the top layer) possible for each case. We proceeded to calculate the surface formation energy for each one of the cleaved surfaces evaluated for their respective terminations. The surface energy can be defined as the energy needed to cleave the bulk crystal<sup>8,9</sup>, it is a critical factor in the development of surface morphologies and can highlight some important surface characteristics. Fig. S2 and S3 summarize the average surface energy for all cleaved surfaces and their possible terminations for Co<sub>2</sub>C and Co<sub>3</sub>C, respectively. After analyzing the surface energy and the internal structure of the different surfaces, it was found that some of the surfaces evaluated have similar energetic and geometrical properties. For that

below is available upon request.



Surface energy comparison for Co<sub>3</sub>C surfaces

Fig. S2 Surface energies calculated for Co<sub>2</sub>C cleaved surfaces evaluated. A lesser value for surface energy implies the formation of the respective cleaved surface is more likely to occur, compared with others.



Surface energy comparison for Co<sub>2</sub>C surfaces

Fig. S3 Surface energies calculated for Co<sub>3</sub>C cleaved surfaces evaluated.

Before running the main simulations to calculate the work of adhesion, preliminary simulations were done to find the ideal graphene initial distance to the top layer in the slab. Below are the

three different behavior obtained due to the surface chemistries evaluated, summarized in Figure S4 from  $Co_2C$  (101) cleaved surface as an example.

Energy behavior in Fig. S4 a finds a stabilization value at a relatively long distance from the surface (i.e. at around 0.335 nm from the top layer). This behavior matches with all cases where the termination of the top layer is found to be C-terminated. Comparing the stabilization distance with a graphite system demonstrates that the behavior is quite similar and the main interaction taking place is the C-C graphite-like interaction. For those systems, the initial distance was defined as 0.245 nm, based on previous work<sup>10</sup>.

The second case, shown in Fig. S4 b, has a like-stabilization behavior for the system's energy at a closer distance than the previous one, but still do not have a minimum energy value as expected. For all cases that match this behavior, the presence of C atoms in the top layer is less severe without a predominant species, bringing a Co/C termination. The initial distance for each of these cases was defined as the point where the graph stabilizes and the  $\Delta E$  is not significant.

Finally, for the third energy behavior in Fig. S4 c, a minimum energy point was found. Then, a second series of simulations were done, setting the new range in the area where the minimum energy system was initially found in order to accurately predict the initial distance as shown in Fig. S4 d. Table S6 shows the graphene layer's initial distance for the systems reported.



**Fig. S4** Different energy profiles found for the graphene layer stabilization over the cleaved surfaces according to the different surface chemistries obtained. Behavior states for (a) all C terminations, (b) all Co/C termination, and (c) and (d) for all Co terminations evaluated.

| Table S6   | Initial of | listance t | for the | graphene   | layer  | with | respect | to the | e top | layer 1 | for the | e syster | ms |
|------------|------------|------------|---------|------------|--------|------|---------|--------|-------|---------|---------|----------|----|
| (cleaved s | urface a   | ind surfa  | ce cher | nistry) re | ported | l.   |         |        |       |         |         |          |    |

| Co <sub>2</sub> C |          | Co <sub>3</sub> C |          |  |  |
|-------------------|----------|-------------------|----------|--|--|
|                   | Initial  |                   | Initial  |  |  |
| Surface           | Distance | Surface           | Distance |  |  |
|                   | (nm)     |                   | (nm)     |  |  |
| 020               | 0.245    | 020               | 0.220    |  |  |
| 101               | 0.245    | 111               | 0.245    |  |  |
| 011               | 0.182    | 002               | 0.180    |  |  |
| 110               | 0.170    | 201               | 0.142    |  |  |
| 111               | 0.172    | 211               | 0.156    |  |  |
| -201              | 0.184    | 022               | 0.154    |  |  |
| -211              | 0.174    | -121              | 0.160    |  |  |
|                   |          | 210               | 0.245    |  |  |
|                   |          | -220              | 0.178    |  |  |
|                   |          | -122              | 0.202    |  |  |
|                   |          | 113               | 0.160    |  |  |
|                   |          | 131               | 0.154    |  |  |
|                   |          | 042               | 0.182    |  |  |

Т

The work of adhesion for each one of the cleaved surfaces was evaluated rotating each graphene layer approximately 36 degrees in order to evaluate the different possibilities for the graphene layer to interact with the surface atoms with more than one specific coordination. Hereafter, we report the characteristics for those geometries that showed the weakest, the strongest, and an intermediate value for work of adhesion in order to highlight the comparison and draw meaningful conclusions (Table S7).

| Table S7   | Weakest,    | intermediate a   | and strongest   | work of   | adhesion | obtained | for eac | h one | of the |
|------------|-------------|------------------|-----------------|-----------|----------|----------|---------|-------|--------|
| cleaved su | irfaces eva | aluated after ro | otating the gra | aphene la | iyer.    |          |         |       |        |

| Co <sub>2</sub> C |                                 |              | Co <sub>3</sub> C |         |                                 |              |           |
|-------------------|---------------------------------|--------------|-------------------|---------|---------------------------------|--------------|-----------|
|                   | Work of<br>Adhesion<br>(eV/nm²) |              |                   |         | Work of<br>Adhesion<br>(eV/nm²) |              |           |
| Surface           | Weakest                         | Intermediate | Strongest         | Surface | Weakest                         | Intermediate | Strongest |
| 020               | -16.12                          | -21.97       | -29.89            | 020     | -10.83                          | -15.71       | -28.11    |
| 101               | -12.91                          | -15.31       | -25.54            | 111     | -10.52                          | -14.99       | -29.23    |
| 011               | -20.92                          | -24.8        | -27.86            | 002     | -16.99                          | -20.99       | -25.76    |
| 110               | -7.42                           | -28.74       | -33.92            | 201     | -19.04                          | -24.94       | -29.33    |
| 111               | -20.72                          | -24.22       | -28.44            | 211     | -21.64                          | -24.64       | -27.92    |
| -201              | -17.38                          | -22.05       | -26.84            | 022     | -23.72                          | -26.74       | -28.89    |
| -211              | -20.47                          | -23.93       | -26.94            | -121    | -8.68                           | -16.9        | -20.31    |
|                   |                                 |              |                   | 210     | -9.72                           | -16.76       | -23.52    |
|                   |                                 |              |                   | -220    | -16.48                          | -24.05       | -29.51    |
|                   |                                 |              |                   | 113     | -12.2                           | -13.24       | -15.69    |
|                   |                                 |              |                   | 131     | -11.28                          | -14.4        | -16.95    |
|                   |                                 |              |                   | 042     | -10.54                          | -14.23       | -19.66    |

# 5. Movie Descriptions

Presented are descriptions of the movies included as part of the Supporting Information. For all

movies, time is displayed on the top left with units in seconds and the movie has a rate of 30

frames per second.

**Movie S1** Multiple different nanoparticles varying from 1 nm to 5 nm in diameter. Five nanoparticles are specifically labelled to better track their progress. Nanoparticles 2, 3, and 4 show SWCNT growth, while nanoparticles 1 and 5 do not show growth but become encapsulated by a graphene layer. Growth is also shown to occur at different rates.

**Movie S2** An active catalyst around 2 nm in diameter on MgO support with holey carbon film during SWCNT growth. The catalyst is calculated to be in the  $Co_2C$  phase.

**Movie S3** An inactive catalyst around 4 nm in diameter on MgO support with holey carbon film showing no graphene formation or SWCNT growth. The nanoparticle is calculated to be in the  $Co_3C$  phase.

**Movie S4** A deactivated catalyst around 5 nm in diameter on MgO support with holey carbon film with prior SWCNT liftoff but no further growth during the period of observation. The nanoparticle is calculated to be in the  $Co_3C$  phase.

**Movie S5** The deactivation of a nanoparticle around 2 nm in diameter. Initially a graphene cap forms, then subsequently lifts off and becomes a SWCNT. After which, the nanoparticle deactivates and do not show further growth.

### References

- 1 J. Scott, P. J. Thomas, M. MacKenzie, S. McFadzean, J. Wilbrink, A. J. Craven and W. A. P. Nicholson, *Ultramicroscopy*, 2008, **108**, 1586–1594.
- 2 R. F. Egerton, *Electron Energy-Loss Spectroscopy in the Electron Microscope*, Springer US, 3rd edn., 2011.
- 3 Y. Zhao, T. E. Feltes, J. R. Regalbuto, R. J. Meyer and R. F. Klie, *J. Appl. Phys.*, 2010, **108**, 1–7.
- 4 S. Mazzucco, M. Tanase and R. Sharma, Crystal Ball Plus.
- 5 S. Nagakura, J. Phys. Soc. Japan, 1961, 16, 1213–1219.
- 6 J. Clarke and K. H. Jack, *Chem. Ind.*, 1951, **1951**, 1004–1005.
- 7 L. Y. Markovskii, E. T. Bezruk and G. E. Berlova, *Inorg. Mater.*, 1971, 7, 50–52.
- 8 N. D. Lang and W. Kohn, *Phys. Rev. B*, 1970, **1**, 4555–4568.
- K. L. Johnson, K. Kendall, A. D. Roberts and D. Tabor, *Proc. R. Soc. London A*, 1971, 324, 301–313.
- 10 M. Picher, P. A. Lin, J. L. Gomez-Ballesteros, P. B. Balbuena and R. Sharma, *Nano Lett.*, 2014, 14, 6104–6108.