Supporting Information

## Drawing WS<sub>2</sub> thermal sensors on paper substrates

*Martin Lee*,<sup>1</sup> *Ali Mazaheri*<sup>2,3</sup>, *Herre S. J. van der Zant*<sup>1</sup>, *Riccardo Frisenda*<sup>2</sup>, *Andres Castellanos-Gomez*<sup>2,\*</sup>

<sup>1</sup>Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands. <sup>2</sup>Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, E-28049, Spain. <sup>3</sup>Nanophysics research Lab., Department of Physics. University of Tehran, Tehran 14395, Iran. <u>andres.castellanos@csic.es</u>

Comparison between the performance of  $WS_2$  and graphite on-paper thermoresistive devices

Measurements on different WS<sub>2</sub> devices

Optical characterization of the WS<sub>2</sub> film on paper

Raman characterization of the graphite electrode drawn on top of the films

Characterization of the electrical properties of a WS<sub>2</sub> film on paper

Resistance vs. temperature of device shown in Figure 4 in log scale

# Comparison between the performance of $WS_2$ and graphite on-paper thermoresistive devices



Figure S1. Comparison between the response of WS<sub>2</sub> and graphite on-paper thermoresistive devices upon sudden temperature changes. The devices are warmed up at ~45-55 °C and a hand pump blows pulses of cool air onto the device that show up as increases in resistance. Note the big difference in the vertical axis for the different materials.

### Measurements on different WS<sub>2</sub> devices



Figure S2. Change in the resistance vs. temperature for 6 different  $WS_2$  devices. Note that the devices were intended to span over a wide range of thicknesses. In fact, their room temperature resistance varies between 0.7 M $\Omega$  and 20 M $\Omega$ . Despite the difference in device resistance the resistance change is rather reproducible in all the devices.

#### Optical characterization of the WS<sub>2</sub> film on paper



Figure S3. Transmittance spectrum of a WS<sub>2</sub> film on paper. The differential transmittance (normalized with respect to bare, uncovered paper) of the WS<sub>2</sub> film shows a prominent peak at ~1.95 eV that agrees well with the one observed in multilayer WS<sub>2</sub> flakes. This peak is attributed to the resonant absorption for photons with the energy matching the direct band gap transition A at the K point of the Brillouin zone.

#### Raman characterization of the graphite electrode drawn on top of the films



Figure S4. Characterization of the interface of a graphite electrode drawn onto a  $MoS_2$  film on paper. (left) Optical microscopy image of the film/paper cross-section studied by Raman spectroscopy. The yellow arrow indicates the approximate line scan measured. (right) Intensity of the different Raman peaks as a function of the distance. The line scan starts outside the sample and at ~10 µm the signal from the graphite 2D peak starts to be measurable. The  $MoS_2$  signal ( $A_{1g}$  peak) starts to increase when the graphite signal drops. The paper fluorescence signal is also plotted showing how its intensity increases dramatically once the  $MoS_2$  signal drops. The spot-size used in this measurement is ~5 µm in diameter which would explain the intermixed signal between the graphite and  $MoS_2$ .



#### Characterization of the electrical properties of a WS<sub>2</sub> film on paper

Figure S5. Transfer length measurement to determine the contact resistance and conductivity of a WS<sub>2</sub> film on paper. A long bar-shaped WS<sub>2</sub> film is drawn on paper (20 mm wide, 20  $\pm$  5  $\mu$ m thick) with graphite electrodes with different electrode spacing. The insets show a picture of the device and a cross-section optical microscopy image of a cross-section of the WS<sub>2</sub> film on paper to determine the thickness. The resistance between different pairs of electrodes are measured. The contact resistance ( $R_c = 0.7 \text{ M}\Omega$ ) is extracted from the crossing of the linear fit with the vertical axis. The conductivity of the film (G = 3.5  $\pm$  1.3 mS/m) is extracted from the slope of the resistance *vs*. electrodes distance linear trend and the device geometry.

#### Resistance vs. temperature of device shown in Figure 4 in log scale



**Figure S6.** Resistance vs. temperature characteristics of the thermoresistive device shown in Figure 4 of the main text but in log-scale to demonstrate that it cannot be fitted to a single exponential decay.