## Role of Carbon – Dots – Derived Underlayer in Hematite Photoanodes

Qian Guo<sup>1</sup>, Hui Luo<sup>2</sup>, Jifang Zhang<sup>3</sup>, Qiushi Ruan<sup>4</sup>, Arun Prakash Periasamy<sup>1</sup>, Yuanxing

Fang<sup>5</sup>, Zailai Xie<sup>5</sup>, Xuanhua Li<sup>6</sup>, Xinchen Wang<sup>5</sup>, Junwang Tang<sup>4</sup>, Joe Briscoe<sup>1</sup>, Magdalena

Titirici<sup>2</sup>, Ana Belen Jorge<sup>1, \*</sup>

<sup>1</sup>School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK

<sup>2</sup>Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK

<sup>3</sup>Tsinghua-Foxconn Nanoscience Research Center, Department of Physics, Tsinghua University, Beijing 100084, P. R. China

<sup>4</sup>Department of Chemical Engineering, UCL Torrington Place, London, WC1E 7JE, UK

<sup>5</sup>State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China

<sup>6</sup>School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an

710072, P. R. China



Fig.S1 (a) FTIR of CDs and UCDs (15); (b) XPS survey spectra for CDs and UCDs (15).



Fig. S2 SEM images of (a) FTO and (b) UCDs (10); AFM images of (c) UCDs (5), (d) UCDs (15), and (e) UCDs (20).



Fig. S3 TEM images of (a) pristine hematite, (b) H/UCDs (5), (c) H/UCDs (10), (d) H/UCDs (15), and (e) H/UCDs (20).



Fig. S4. Zero-loss peaks of EELS spectrum.



Fig. S5 (a) XRD and (b) XPS survey spectra of pristine hematite and H/UCDs photoelectrodes.



Fig. S6 (a) UV-vis absorption spectra; (b) Indirect and (c) Direct Tauc plots for pristine hematite and H/UCDs photoelectrodes.



Fig. S7 Mott-Schottky plots at 10  $KH_Z$  under dark conditions.

|                   |                 |                 |                    | 57                 |                    |                     |                     |                 |                  |       |                 |
|-------------------|-----------------|-----------------|--------------------|--------------------|--------------------|---------------------|---------------------|-----------------|------------------|-------|-----------------|
|                   | Mott-           | Schottky        |                    |                    | PEI                | IS                  |                     |                 | IMPS             |       |                 |
| Sample            | E <sub>fb</sub> | N <sub>d</sub>  | Rs                 | R <sub>trap</sub>  | R <sub>ct</sub>    | $C_{\rm bulk}$      | $C_{\rm ss}$        | K <sub>ct</sub> | K <sub>rec</sub> | CTE   | $\tau_d$        |
|                   | V               | $	imes 10^{18}$ | $\Omega~{ m cm^2}$ | $\Omega~{ m cm^2}$ | $\Omega~{ m cm^2}$ | μF cm <sup>-2</sup> | μF cm <sup>-2</sup> | s <sup>-1</sup> | s <sup>-1</sup>  | %     | s <sup>-1</sup> |
| Pristine Hematite | 0.43            | 1.09            | 17.97              | 11016              | 40095              | 7.46                | 17.86               | 5.03            | 16.42            | 23.45 | 0.20            |
| H/UCDs (5)        | 0.46            | 1.19            | 20.34              | 12557              | 61337              | 8.41                | 27.74               | 3.95            | 14.42            | 21.51 | 0.25            |
| H/UCDs (10)       | 0.56            | 1.71            | 18.23              | 644.1              | 2673               | 17.00               | 180.65              | 20.30           | 11.22            | 64.40 | 0.41            |
| H/UCDs (15)       | 0.67            | 2.30            | 29.27              | 472.8              | 780.6              | 29.66               | 300.70              | 21.16           | 6.30             | 77.07 | 0.62            |
| H/UCDs (20)       | 0.45            | 1.61            | 22.53              | 3419               | 16733              | 10.79               | 82.95               | 6.40            | 16.69            | 27.70 | 0.29            |

Table S1. Mott-Schottky, PEIS and IMPS results at 1.25 V vs RHE.



**Fig. S8.** Mott-Schottky plots at (a) 3 KH<sub>Z</sub> (b) linear fitting of Mott-Schottky plots at 3 KH<sub>Z</sub> (c) Mott-Schottky plots at 5 KH<sub>Z;</sub> (d) linear fitting of Mott-Schottky plots at 5 KH<sub>Z</sub>.

|                   |                 | 3 KHz            | 5 KHz        |                  |  |
|-------------------|-----------------|------------------|--------------|------------------|--|
| Sample            | E <sub>fb</sub> | N <sub>d</sub>   | $E_{\rm fb}$ | Nd               |  |
|                   | V               | cm <sup>-3</sup> | V            | cm <sup>-3</sup> |  |
| Pristine Hematite | 0.51            | 1.26E18          | 0.48         | 1.21E18          |  |
| H/UCDs (5)        | 0.53            | 1.41E18          | 0.50         | 1.34E18          |  |
| H/UCDs (10)       | 0.69            | 2.43E18          | 0.65         | 2.10E18          |  |
| H/UCDs (15)       | 0.78            | 5.02E18          | 0.75         | 3.57E18          |  |
| H/UCDs (20)       | 0.52            | 2.15E18          | 0.50         | 1.95E18          |  |

Table S2. Mott-Schottky results at 3KHz and 5 KHz

## **Mott-Schottky Analysis:**

The Mott-Schottky measurements have been calculated following the equation<sup>1</sup>:

$$\frac{1}{C^2} = \left(\frac{2}{\varepsilon \varepsilon_0 A N_d}\right) \left(E - E_{fb} - \frac{k_B T}{e}\right)$$
S1

where *C* and *A* are the space charge capacitance and photoelectrode area, respectively,  $\varepsilon$  is the vacuum permittivity (8.85×10<sup>-12</sup> F m<sup>-1</sup>),  $\varepsilon_0$  is the relative dielectric constant of hematite ( $\varepsilon_0 = 33$ ),<sup>2</sup> N<sub>d</sub> is the charge donor density (cm<sup>-3</sup>), *E* is the applied potential,  $E_{fb}$  is the flat band potential,  $k_B$  is the Boltzmann constant (1.38×10-23 J K<sup>-1</sup>), *T* is the absolute temperature (in K), and *e* is the electronic charge.  $E_{fb}$  can be determined from the intercept on the potential axis by the extrapolation of the linear variation part of  $1/C^2$  against potential *E*, and the slope of the straight line is related to  $N_d$  based on the following equation<sup>3</sup>:





**Fig. S9** (b) Nyquist plot and corresponding fitting curve of H/UCDs (15) at 1.25 v vs. RHE, and inset image shows equivalent circuit used; (c)  $R_{\text{trap}}$ , (d)  $R_{\text{ct}}$ , (e)  $C_{\text{bulk}}$ , and (f)  $C_{\text{ss}}$  obtained from EIS fitting as a function of applied potential for hematite and H/UCDs samples.

## References

- 1. F. Cardon and W. Gomes, Journal of Physics D: Appl. Phys., 1978, 11, 63.
- P. Tang, H. Xie, C. Ros, L. Han, M. Biset-Peiro, Y. He, W. Kramer, A. P. Rodriguez, E. Saucedo, J. R. Galan-Mascaros, T. Andreu, J. R. Morante and J. Arbiol, *Energy Environ. Sci.*, 2017, 10, 2124-2136.
- 3. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang and Y. Li, *Nano lett.*, **2009**, 9, 2331-2336.