Electronic Supplementary Materials

For

Flexible low-power source-gated transistors with solution-processed metal-oxide semiconductors

Dingwei Li,^a Momo Zhao,^b Kun Liang,^a Huihui Ren,^a Quantan Wu,^c Hong Wang^{*b} and Bowen Zhu^{*a}

- a. Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China. E-mail: <u>zhubowen@westlake.edu.cn</u>
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.
 E-mail: <u>hongwang@xidian.edu.cn</u>
- c. Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China.

Fig. S1. UV-Vis spectrum of as prepared In_2O_3 film. (a) UV-Vis transmission spectrum of spin-coated In_2O_3 thin film on quartz substrate. (b) Tauc analysis of the absorption spectrum of In_2O_3 yields the bandgap as 3.62 eV.

Fig. S2. Electrical and capacitance-voltage (*C*-*V*) measurements of Au/In₂O₃/Si(p⁺⁺) structure (inset: schamatic of structure). (a) Current-voltage (*I*-*V*) curve of Au/In₂O₃/Si(p⁺⁺) structure, showing a typical Schottky diode behavior with a rectification ratio ~10³. (b) *C*-*V* curve of the diode. Capacitance was measured with voltage applied on Au electrode. Semiconductor capacitance (*C_d*) was extracted as 52.4 nF cm⁻² at V = 0 V. (c) Corresponding *C*⁻²-*V* plot and mean carrier concentration of In₂O₃ was extracted from the slope as 1.15×10^{17} cm⁻³.

Fig. S3. Saturation voltage as a function of gate voltage for SGT and ohmic TFTs on rigid substrate with SiO₂ dielectric. SGT shows a much lower slope of \sim 0.2 than that of ohmic TFTs (\sim 1).

Fig. S4. Transfer curves of 20 devices for both ohmic TFTs and SGTs. All the ohmic TFTs exhibit severe negative threshold voltages (-18 ± 2.7 V). While the SGTs show positive threshold voltages (2.1 ± 1.9 V), enabling low-voltage operations.

Fig. S5. Characterization of In_2O_3 SGTs with different channel thickness. (a-b) AFM height profiles (top) and corresponding AFM images (bottom) of as-prepared In_2O_3 thin films with 3 (a) and 5 (b) layers, showing thicknesses of ~15.8 and ~18.2 nm, respectively. (c-d) Transfer (c) and output (d) curves of SGTs with 1, 3, and 5 channel layers.

Fig. S6. Cross-sectional SEM image of spin-coated PI thin film, showing a thickness of ${\sim}1.7~\mu m.$

Fig. S7. Electrical performance of solution-processed Al_2O_3 dielectric layer. (a) Capacitance-frequency (*C-F*) and (b) Current-voltage (*I-V*) measurement of Au/Al₂O₃/Si(p⁺⁺)-based MIM capacitor. The Al₂O₃ dielectric (~30 nm thick) exhibits high capacitance of 183.0 nF cm⁻² at 1 kHz and a high breakdown voltage of ~3.5 MV cm⁻¹.

Fig. S8. Saturation voltage as a function of gate voltage for flexible SGT and ohmic TFTs on PI substrate with Al_2O_3 dielectric. SGT and ohmic TFT exhibit slopes of ~0.17 and ~1, respectively.

Channel material	Source /drain electrodes	V _{th} (V)	SS (mV dec ⁻¹)	Power density* (mW cm ⁻²)	Intrinsic gain	Bending radius	Ref.
Polysilicon	Cr/Cr	-23	NA	400	500	NA	1
IGZO	Pt/Pt	3	NA	14	~29000	NA	2
IGZO	Mo/Mo	1.5	280	0.0075	450	NA	3
ZnO	Pt/Ti	-3.4	750	160	>100	NA	4
ZnO	Au/Al	NA	NA	50	NA	NA	5
C8- BTBT/PS	Ag/Ag	-0.01	60.2	0.10	~1100	NA	6
N2200	Au/Al	0.1	NA	10	NA	5.8 mm	7
In ₂ O ₃	Au/Al	0.42	102	0.0463	~1000	5 mm	This work

Table S1. Comparation of electrical and mechanical performance of TFTs with Schottky-barriers.

*Power density is calculated by $P_{sat}=I_{DS_Sat} \times V_{DS_sat}/(W \times L)$. The saturation current (I_{DS_Sat}) and voltage (V_{DS_sat}) values are obtained from output characteristics in the references.

References:

- 1. R. A. Sporea, J. M. Shannon and S. R. P. Silva, 6th Conference on Ph.D. Research in Microelectronics & Electronics, 2010, 1-4.
- J. Zhang, J. Wilson, G. Auton, Y. Wang, M. Xu, Q. Xin and A. Song, *Proc. Natl. Acad. Sci.*, 2019, 116, 4843.
- 3. S. Lee and A. Nathan, *Science*, 2016, **354**, 302.
- 4. A. S. Dahiya, C. Opoku, R. A. Sporea, B. Sarvankumar, G. Poulin-Vittrant, F. Cayrel, N. Camara and D. Alquier, *Sci. Rep.*, 2016, **6**, 19232.
- 5. A. H. Adl, A. Ma, M. Gupta, M. Benlamri, Y. Y. Tsui, D. W. Barlage and K. Shankar, *ACS Appl. Mater. Interfaces*, 2012, **4**, 1423-1428.
- 6. C. Jiang, H. W. Choi, X. Cheng, H. B. Ma, D. Hasko and A. Nathan, *Science*, 2019, **363**, 719-723.
- 7. Y. Kim, E. K. Lee and J. H. Oh, *Adv. Funct. Mater.*, 2019, **29**, 1900650.