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(A) PERMITTIVITY TENSORS FOR VARIOUS
MEDIA

For convenience of the reader, we include the expres-
sions for elements of the dielectric permittivity tensor ε̂
[eqn (1) in the article] for different materials considered
in the paper.

(1) Plasmonic material

The simplest example is a thin film made of silver
or gold, represented in the same way as magnetised
plasma [1, 2]

1 + ε⊥ = 1−
ω2
p (ω − i/τ)

ω [(ω − i/τ)2 − ω2
c ]
,

β =
ωc ω

2
p

ω [(ω − i/τ)2 − ω2
c ]
.

(1)

Here, ω is the frequency of light, ωp is the material’s
plasma frequency and τ is the relaxation time. For silver,

ωp = 2321 THz and 1/τ = 5.513 THz [3]. Assuming a
quadratic magnetic field profile, as required for focusing,
ωc reads
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with M = me/m
∗ = 1 for electrons in metal. Therefore,

the focal length reads
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dτ2ω2
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where the approximate value takes place under realistic
magnetic fields [ω0 = (2π) 28 GHz per 1 T of applied
field], so that both ω and ω0 � 1/τ ; Rc is the curvature
radius of the magnetic field and d is the film thickness.

(2) Ferrite

When working with non-magnetic materials, relative
permeability µ = 1, so that it is omitted and the eqn (2)
of the article contains only the permittivity tensor ε̂. For
ferrites, the tensor form is traditionally assigned to µ̂,
whereas ε has a scalar value (ε = 15 for YIG, Yttrium
Iron Garnet). It is equivalent to write the paraxial wave
equation (2) of the article as(

∆⊥ + 2ik∂z
)
~E = −k2

(
εµ̂− Î

)
~E, (4)

where µ̂ has the same form as ε̂ in eqn (1) in the article.
Let us write down its elements ready for eqn (2) of the
article [4]

1 + ε⊥ = ε

[
1− ωM (ωc + iαω)

ω2 − (ωc + iαω)2

]
,

β =
ε ω ωM

ω2 − (ωc + iαω)2
.

(5)

Here, ωM = qMs/mec withMs being the saturation mag-
netisation (ωM = 2π · 49.8 GHz for YIG), α = 2 · 10−4
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FIG. 1. Cyclotron resonance transition in graphene w.r.t.
different circular polarisation components. In bottom panels,
dotted curves are the derivatives of phases. Peak positive
value of each is a working point for a lens.

(tangent loss angle, YIG) and ωc is equivalent to Lar-
mor frequency ωL, because ferrimagnetism in YIG re-
sults from electronic spin, so that eqn (2) is applicable
with M = 1. In the proximity of the resonance, ω ≈ ω0,
one may obtain expressions identical to eqn (8) and (9)
of the main article, with 1/τ = αω0 and A = ωMω0.

(3) Graphene

Drude-like model for magnetised graphene is written
in terms of conductivity as follows [5, 6]

σ̂ =

σxx −iσxy 0
iσxy σyy 0

0 0 σzz

 ,

σxx = σyy =
q2|µc|
π~2

i(ω − i/τ)

(ω − i/τ)2 − ω2
c

,

σxy =
q2|µc|
π~2

ωc

(ω − i/τ)2 − ω2
c

.

(6)

Here, µc is the chemical potential and ~ is the reduced
Planck constant. Isotropic component σzz is of no fur-
ther interest. Limiting to intraband transitions only, we
follow the transformation ε̂eff = (4πi/ωd) σ̂ and find the
elements of the effective permittivity tensor to read [com-
pare to eqn (8) in the article]

1 + ε⊥ =
−2α0|µc|

π~
λ

d

(ω − i/τ)

(ω − i/τ)2 − ω2
c

,

β =
2α0|µc|
π~

λ

d

ωc

(ω − i/τ)2 − ω2
c

.

(7)

Here α0 is the fine structure constant and λ = 2πc/ω is
the free-space wavelength, c is the speed of light. ωc is

FIG. 2. Cyclotron resonance transition in InSb w.r.t. different
circular polarisation components. In bottom panels, dotted
curves are the derivatives of phases. Peak positive value of
each is a working point for a lens.

given by eqn (2) with a variableM = meV
2
F /|µc|, VF be-

ing the Fermi velocity. Upon series expansion, the focal
length takes on the form of eqn (9) of the article. Cor-
responding constant is combined with thickness d and
removes it from the expression for f±, Ad = 2α0|µc|/~ =
1.95 · 1019 [eV−1s−2]·|µc| [eV]. An important feature of
graphene-based OML is that only one polarisation com-
ponent is focused resonantly, see Fig. 1. Thus, it allows
for selective focusing of one polarisation or determining
the polarisation content of incident light.

(4) Semiconductor

Magnetised semiconductors acquire the tensor form
[eqn (1) in the article] of dielectric permittivity [7], with
the elements identical to those given by eqn (8) of the
article

1 + ε⊥ = ε∞ −
ε∞ω

2
p (ω − i/τ)

ω [(ω − i/τ)2 − ω2
c ]
,

β =
ε∞ωc ω

2
p

ω [(ω − i/τ)2 − ω2
c ]
.

(8)

For InSb, τ = 3.1 ps, ε∞ = 15.68, ωp = 2.43 THz, and
A = ε∞ω

2
p = 9.26 · 1025 s−2. Upon series expansion,

the focal length takes on the form of eqn (9) of the ar-
ticle. Unlike in graphene, M is a constant defined by
the process used for manufacturing of the sample. In
Table I (main article), M = 50 is assumed. Similarly
to ferrites, both polarisations are focused with different
effective permittivities, see Fig. 2.
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(5) Array of magnetic nanoparticles

From the eqn (9) in the article one can see that the
focusing effect declines with the frequency increase. Yet
it is still present at optical frequencies (near-infrared to
visible). A periodic array of ferromagnetic nanoparti-
cles (e.g. disks or pillars made of TbCo [8]) allows one
to achieve a certain degree of focusing. Analytical cal-
culations are very limited in this case, while numerical
are demanding in computation power. We estimate the
efficiency of such an array using a simplified full-wave nu-
merical model. In the model, we sweep over the values
of B0 and determine the phase derivative dφ/dB0. In
comparison with InSb (Fig. 2), it turns out to be a fac-
tor of 100 smaller, which is roughly the frequency ratio,
ωNIR = (2π) 300 THz for 1 µm wavelength.

(6) Astrophysical plasma

In outer space there exist directed microwave sources
such as cyclotron radiation in the magnetosphere of
white dwarfs and pulsars [9, 10] or maser-like emission
in the atmosphere of stars belonging to asymptotic gi-
ant branch [11]. Extremely high magnetic fields occur
nearby pulsars and white dwarfs [9]. These fields are
non-uniform. Hence, low density plasma nearby stellar
objects with high magnetic fields may cause wavefront
transformation and affect the perceived position of the
source. Formulae given by eqn (1)-(3) are applicable,
although with caution. Astrophysical plasma is often
approximated as collisionless, τ → ∞. Alternatively,
1/τ � ω and ω0. Thus, for quadratic magnetic fields

f± ≈ ∓
R2

c

dω2
p

ω

ω0
(ω ∓ ω0)2, (9)

which may be enough to make the source appear to be
at a different distance. We would like to stress that any
non-uniformity of the magnetic field over plasma gives a
wavefront transformation. In most cases, it would act as
aberrations and increase divergence of light.

(B) IMAGE FORMATION BY OPTICAL
MAGNETIC LENS

To quantitatively characterise the focusing effect of the
OML, we calculate the standard parameters of the fo-
cused optical beam: position of a new waist of the beam
and the beam size at the waist. First, we compute how
the beam size changes due to OML attenuation. The
inhomogeneous attenuation coefficient a± = log

(
|T±|

)
modifies the size of a new waist w as

1

w2
=

1

w2
0

+

∣∣a′′±∣∣
2R2

c

, (10)

FIG. 3. Left panel: distribution of the magnetic field
generated by two coils located at the dashed lines. Right
panel: Transverse distributions of the magnetic field B/B0 =
1 + r2/R2

c given by different current ratios I1/I2 in the coils.

so that the beam size is reduced due to attenuation.
Hence, the lens equation [12, 13] for Gaussian optical
beams connecting the position of an object s and image
s′ (for real image s′ > 0 ) is modified to read

1

s+ z2
R/(s− f)

+
w/w0

s′
=

1

f
, (11)

where zR = πw2
0/λ is the Rayleigh length. Eqn (11)

shows that the image appears closer as compared to the
case when the lens attenuation is zero and w = w0. The
beam size, w′, at the new waist position s′ is

w′ = wf/
√

(s− f)2 + z2
R (12)

and depends on the renormalised beam size w.

(C) FINE TUNING OF THE FOCAL LENGTH BY
USING TWO COILS

Optical Magnetic Lens can be tuned precisely by con-
trolling the current ratio of two coils, see Fig. 3. Impor-
tantly, the rate of retuning is limited only by the capabili-
ties of power supplies that feed the coils. The plots in the
figure were generated by direct integration of Biot-Savart
law. In the center (y = 0 in the left panel), the field is
most uniform, solenoid-like. Thus, an optimal point to
locate the OML is slightly out of the coils, where trans-
verse curvature of the magnetic field becomes profound.
In the right-hand-side panel one may see that different
values of I1/I2 provide different values of Rc.
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(D) DERIVATION OF THE DIELECTRIC
PERMITTIVITY TENSOR IN A NON-UNIFORM

MAGNETIC FIELD

We derive the tensor of dielectric permittivity of
plasma, ε̂, in a non-uniform magnetic field ~B(r) from the
first principles, namely: (i) microscopic Maxwell’s equa-

tions for the electric and magnetic vectors ~E and ~B; (ii)
the Newton-Lorentz equation of motion of charge carri-
ers in a thin layer; and (iii) the microscopic current in
the form of the Klimontovich distribution. For simplic-
ity, we consider the case of electrons in a plasma layer
and a monochromatic wave.

Let us start with the motion of charge carriers in com-
bined non-uniform fields (Cartesian coordinates)

~̈R =
q

m
~E(~R)eiωt +

q

mc

[
~̇R× ~B(~R)

]
, (13)

where ~R(t) is the instantaneous position of the charge

carrier, t is the time, ~E(~R) is the electric field of an inci-

dent light wave of frequency ω, ~B(~R) is the external static
non-uniform magnetic field, c is the speed of light, q and
m are the charge and mass of the particle respectively. In
order to solve it, we expand it into series and thus split
the motion into slow and fast components ~R = ~r + ~ξ, ~r
being a coordinate with a characteristic frequency reach-
ing towards zero, while ~ξ oscillates with a frequency close
to ω. We point out that only the fast component is ra-
diative. The equation of motion for the fast component
reads

~̈ξ =
q

m
~E(~r)eiωt +

q

mc

[
~̇ξ × ~B(~r)

]
, (14)

where dependence of ~r on time can be neglected. With

an ansatz Y = ~̇ξ, this equation reduces to a non-
homogeneous system of differential equations of the first
order Ẏ − ÂY = F (t), where

Â(~r) =

 0 −ωz
c ωy

c

ωz
c 0 −ωx

c

−ωy
c ωx

c 0

 , F (~r, t) =
q

m
~E(~r)eiωt

(15)

and ~ωc(~r) = q ~B(~r)/mc. Finding a general solution by
variation of parameters is straightforward, but tedious,
so here we consider only one specific case when ~B =
(0, 0, Bz) and ωc = ωz

c . Then, the solution for the fast
component of acceleration of charge carriers reads

Ẏ = ~̈ξ =
q

m
eiωt


ω2Ex(~r)+iωωc(~r)Ey(~r)

ω2−ω2
c(~r)

ω2Ey(~r)−iωωc(~r)Ex(~r)
ω2−ω2

c(~r)

Ez(~r)

 , (16)

where one can explicitly see the rise of polarisation mix-
ing. Note that this radiative acceleration of charges con-
tains dependence on the slow macroscopic coordinate ~r.

Let us now turn to the slow component of motion man-
ifested as particle drift. In non-uniform magnetic fields,
charged particles experience slow drift along the axis
transverse to both the field and the field gradient [14].
In non-uniform electric fields, such as the field of a Gaus-
sian beam, particles are subject to ponderomotive drift
from the region of strong field towards weaker field (away
from the beam axis). Thus, the slow part of the equation
of motion reads

~̈r =
q

m
(~ξ ·~∇) ~E(~r)eiωt+

q

mc

[
~̇r × ~B(~r) + ~̇ξ × (~ξ · ~∇) ~B(~r)

]
.

(17)

Here, (~ξ · ~∇) is a scalar differential operator sometimes

called the directional derivative, ~∇ = (∂/∂x, ∂/∂y, ∂/∂z)

and ~ξ = eiωt(x0, y0, z0) is a value of the fast coordinate
that can be found by integrating eqn (16). To solve the
eqn (17), one can time-average the terms that depend on
~ξ. Again, a straightforward, but tedious process that we
omit here. An example of such procedure applied to the
electric field term can be found, for instance, in ref. [15].

Consider the non-uniform magnetic field given by
B0p(r) and a Gaussian incident beam | ~E| ∼ e−|r⊥|

2/2w2
0 .

From the time-averaged equation, it is possible to find
the drift velocity. The interplay of electric and magnetic
drift terms melts down to comparing the characteristic
sizes of their profiles; namely, the beam waist size w0 and
the magnetic field curvature Rc. Both when w0 � Rc

and w0 ≈ Rc, drift velocities have similar magnitude and
opposite signs, which results in negligible net drift. If
w0 � Rc, the magnetic field-driven term dominates over
the ponderomotive drift. However, the drift direction
given by the axisymmetric magnetic field is tangential
to the transverse coordinate r⊥. Thus, non-uniformity
of the field drives particles into slow spirals around the
z-axis without critical effects on the concentration.

To check the consistency of this result, we solve the
equations of motion [eqn (13)] numerically. The ob-
tained numerical solution confirms the analytical result.
In the dimensionless form, the equations depend on a ra-
tio E0/B0. Greatly increasing this ratio does not change
the qualitative behavior of the system, but increases the
area occupied by it (a possible limit by the size of the
sample).

Having established the absence of charge density dis-
turbance, we finally assume a hydrodynamic current in
the form of Klimontovich distribution

~j = qn~v = qn~̇ξ. (18)

From microscopic Maxwell’s equations, electromagnetic
wave equation follows, with the source term given by the
current in eqn (18)(

∆− 1

c2
∂2

∂t2

)
~E(~r, t) =

4π

c2
~̇j =

4πqn

c2
~̈ξ. (19)
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Using the eqn (16), we obtain

(
∆ +

ω2

c2

)Ex(~r)
Ey(~r)
Ez(~r)

 =
ω2
p

c2


ω2Ex(~r)+iωωc(~r)Ey(~r)

ω2−ω2
c(~r)

ω2Ey(~r)−iωωc(~r)Ex(~r)
ω2−ω2

c(~r)

Ez(~r)

 ,
(20)

where ωp =
√

4πq2n/m is the plasma frequency. The
right-hand-side of this equation (source term) can be eas-
ily included on the left as a dielectric permittivity ε. The
presence of imaginary cross-terms there indicates that it
has a tensor form. Upon equating corresponding matrix
products, one can find the permittivity tensor to read

ε̂ =

1 + ε⊥ −iβ 0
iβ 1 + ε⊥ 0
0 0 ε‖

 , ε⊥ =
−ω2

p(ω − i/τ)

ω [(ω − i/τ)2 − ω2
c (~r)]

ε‖ = 1−
ω2
p

ω(ω − i/τ)
, β =

ω2
pωc(~r)

ω [(ω − i/τ)2 − ω2
c (~r)]

.

(21)

Here, we included the phenomenological absorption rep-
resented by the relaxation time τ . Thus, we have shown
that under non-uniform magnetic fields the dielectric per-
mittivity tensor for optical beams retains its form while
acquiring a coordinate dependence given by the applied
field.
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