Plasmon-induced Electron Injection into the Large Negative

Potential Conduction Band of Ga₂O₃ for Coupling with Water

Oxidation

Yaguang Wang,^a Xu Shi,^a Tomoya Oshikiri,^a Shuai Zu,^a Kosei Ueno^b and Hiroaki Misawa^{a,c*}

a. Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan.

b. Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.

c. Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan.

Correspondence and requests for materials should be addressed to H. Misawa (*misawa@es.hokudai.ac.jp)

Fig. S1 Top-view SEM images showing surface morphology of samples fabricated by annealing Au film with different thickness.

Fig. S2 Near-field spectra on Au-NPs/Ga₂O₃ interface with different Au-NPs size simulated by the FDTD method. Inset: FWHMs of the spectra.

In Fig. S2, full-field electromagnetic wave simulations were performed using the finite-difference time-domain method solver (FDTD Solutions, Lumerical). The ellipsoid sphere with various diameters of 10 nm, 15 nm, 22 nm and 50 nm in the x and y directions were used to model the Au-NPs. Accordingly, the z direction was set as 7 nm, 10 nm, 13 nm and 24 nm. The investigated structure was simulated using perfectly matched layers along z-direction and periodic boundary conditions along x-and y-directions with period of 15, 20, 35 and 80 nm, respectively. In the simulation, the refractive index was taken from the optical constants of Johnson and Christy. Ga₂O₃ was treated as dielectric materials with refractive index of 1.8.

Fig. S3 Schematics of the fabrication procedure for the TiO₂/Au-NPs/Ga₂O₃ photoelectrode.

Fig. S4 (a) XRD of single crystal Ga_2O_3 with and without TiO_2 (2 nm). (b) Tauc plots of single crystal Ga_2O_3 with and without TiO_2 (2 nm) calculated from the UV-Vis spectra.

All the peaks in XRD are attributed to the diffraction peaks of β -Ga₂O₃. No peaks shift and broadening of Ga₂O₃ were observed after the deposition of TiO₂. Figure S4b shows the profile of $(\alpha hv)^2$ versus hv for the single crystal Ga₂O₃ with and without TiO₂ (2 nm) which is related to the equation:

$$\alpha hv = A(hv - E_g)^n$$

where A is a constant, n=1/2 for direct band gap semiconductor, α is the absorption coefficient, *h* is the Planck constant, *v* is the light frequency. The bandgap energies (E_g) were estimated from the x-intercept of Fig. S4b.

Fig. S5 XPS spectra of single crystal Ga_2O_3 with and without TiO_2 (2 nm): (a) full survey spectra; (b) core level spectra for Ga 2p; (c) core level spectra for Ti 2p; (d) core level spectra for O 1s.

Two symmetrical peaks of Ga $2p_{1/2}$ (1144.5 eV) and Ga $2p_{3/2}$ (1117.9 eV) were attributed to the Ga³⁺ in Ga₂O₃.¹ After the deposition of TiO₂, peaks of Ti $2p_{3/2}$ and Ti $2p_{1/2}$ at binding energies of 458.6 eV and 464.4 eV appeared indicating the presence of Ti⁴⁺ in TiO₂. The binding energy of O 1s peak of Ga₂O₃ was observed at 530.7 eV. After TiO₂ deposition, the binding energy of O 1s peak shows slightly broadening at the lower energy side rather than peak energy shift, which is ascribed to the presence of O 1s peak of Ti-O (529.8 eV).²

Fig. S6 (a) The top-view SEM image of Au-NPs/TiO₂ (2 nm)/Ga₂O₃. Inset: schematic of Au-NPs/TiO₂/Ga₂O₃ structure. (b) Extinction spectra and (c) IPCE action spectra of Au-NPs/Ga₂O₃ and Au-NPs/TiO₂ (2 nm)/Ga₂O₃. (d) Schematic diagram of charges transfer in Au-NPs/TiO₂/Ga₂O₃.

TiO₂ is deposited on the surface of Ga₂O₃ before the annealing process as shown in the inset in Fig. S6a (Au-NPs/TiO₂/Ga₂O₃). Au-NPs/TiO₂/Ga₂O₃ had a blue shift of LSPR peak and weaker LSPR intensity compared with Au-NPs/Ga₂O₃ as shown in Fig. S6b due to the smaller particle size of Au-NPs (d_{mean} ~10 nm). However, the application of the TiO₂ layer between Au-NPs and Ga₂O₃ dramatically decreases the IPCE to one-third of the value without TiO₂ as shown in Fig. S6c. The hot electrons generated by the photoirradiation would first be transferred to the TiO₂ layer adjacent to Au-NP. The electron transfer from CB of TiO₂ to the more negative CB of Ga₂O₃ is difficult as shown in Fig. S6d. This unfavorable electron transfer process and weaker LSPR effect lead to the IPCE decrease.

Fig. S7 Top-view SEM images (upper) and the particle size distributions (lower) of x-nm-TiO₂/Au-NPs/Ga₂O₃ (x=2-4).

Fig. S8 I-t characteristics Au-NPs/Ga₂O₃ with 0 and 2 nm TiO₂ under 600 nm irradiation.

Fig. S9 Current density-time curve of 2-nm-TiO₂/Au-NPs/Ga₂O₃ under 600 nm light irradiation. The measurement conditions were identical to the photocurrent measurements in the manuscript. The dash line meant the initial value of quasi-steady current density.

After 3 minutes irradiation, quasi-steady photocurrent density was obtained as 310 nA/cm² as shown in Fig. S9. The photocurrent density after 7.5 hours was 280 nA/cm² which showed long-time stability.

Fig. S10 (a) A typical Mott–Schottky plot of Au-NPs/Ga₂O₃ without TiO₂ modification. (b) *I-V* characteristics of 2-nm-TiO₂ / Au-NPs/Ga₂O₃ and Au-NPs/Ga₂O₃ measured in dark condition.

According to the Mott-Schottky measurement in Fig. S10a, the flatband potential of Au-NPs/Ga₂O₃ is estimated to be -1.47 V (vs. SCE at pH 7). Thus, the flat-band potential of Au-NPs loaded Ga_2O_3 could be concluded to be -0.81 V (vs. RHE) by the following formula:

$$E(RHE) = E(SCE) + 0.244 + 0.059 \times pH.$$

After the deposition of TiO_2 , the flat-band potential shows a further positive shift to -0.80 V vs. RHE which is consistent with the onset potential shift in I-V result shown in Fig. S10b. The energy barrier of 2.03 eV is calculated between flat-band potential of 2-nm-TiO₂/Au-NPs/Ga₂O₃ and the oxidation potential of water (+1.23 V vs. RHE).

Fig. S11 *I-V* characteristics of (a) $2\text{-nm-TiO}_2/\text{Au-NPs}/\text{Ga}_2\text{O}_3$ and (b) Au-NPs on TiO₂ thin film with a thickness of 54 nm with and without light irradiation of the wavelength of 600 nm. The current is normalized by the irradiation light energy.

Fig. S12 Schematics of plasmon-induced charges transfer of (a) Au-NPs/Ga₂O₃ and (b) 2 nm-TiO₂/Au-NPs/Ga₂O₃. e and h indicate the electrons and holes, respectively.

Reference

- 1. W. Mi, X. Du, C. Luan, H. Xiao and J. Ma, RSC Adv., 2014, 4, 30579-30583.
- 2. B. Bharti, S. Kumar, H. Lee and R. Kumar, Sci. Rep. 2016, 6, 32355.