Supporting Information

One-pot synthesis of N,S-doped pearl chain tube-loaded Ni_3S_2 composite materials for high-performance lithium-air batteries

Bohan An,^a Jiacheng Li,^a Xiaochao Wu,^a Wanqing Li,^{a,b,*} Yongliang Li,^a Lingna

Sun,^a Hongwei Mi ,^a Qianling Zhang,^a Chuanxin He,^a Xiangzhong Ren ^{a,*}

^a College of Chemistry and Environmental Engineering, Shenzhen University,

Guangdong 518060, PR China

^b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education

and Guangdong Province, College of Physics and Optoelectronic Engineering,

Shenzhen University, Shenzhen 518060, China

*Corresponding author.

E-mail address: renxz@szu.edu.cn, , liwanqing136@foxmail.com

Figure S1 Under different temperature gradients (a) Ni₃S₂@N,S-PCT of pore size distribution; (b) Ni₃S₂@N,S-PCT of adsorption isotherm

Figure S2 (a) XRD of material sample coated on carbon paper; (b) XRD of N,S-PCT at different temperatures

Figure S3 (a) Mapping the diameter of the carbon layer of N,S-PCTs; (b) the whole frame of $Ni_3S_2@N,S-PCT-800$

Figure S4 (a) Mapping the diameter of $Ni_3S_2@N,S-PCT-800$; (b) SEM images of N,S-PCT-800 . The N,S-PCT-800 obtained, the morphology of the carbon tube presents a pearl chain shape.

Figure S5. HRTEM images of Ni₃S₂@N,S-PCT-800

Figure S6 (a) XPS analysis of the samples in different temperatures; (b) XRD pattern of C 1s; (c) XRD pattern of Ni 2p from 700°C to 900°C

Figure S7. (a) loaded carbon paper (b) Original carbon paper

Figure S8. The relationship between Z'and $\omega^{-1/2}$ of O_2 electrode

Figure S9. The discharge/charge profiles of (a) Ni₃S₂@N,S-PCT-700 and (b) Ni₃S₂@N,S-PCT-900, at a current density of 300 mA g⁻¹ with a limited capacity of 500 mAh g⁻¹. The discharge/charge profiles of (c) Ni₃S₂@N,S-PCT-700 and (d) Ni₃S₂@N,S-PCT-900, at a current density of 500 mA g⁻¹ with a limited capacity of

500 mAh g⁻¹

Figure S10. Cycle performance of the Ni₃S₂@N,S-PCT-900, Ni₃S₂@N,S-PCT-800 and Ni₃S₂@N,S-PCT-700 electrodes (a) at current density of 450 mA g^{-1} with limited capacity of 1000 mAh g^{-1} (b) at current density of 500 mA g^{-1} with limited capacity of

500 mAh g⁻¹

Figure S11. The cycle efficiency of $Ni_3S_2@N,S$ -PCT-800 (a) the current density is 450 mA g⁻¹ and the limited capacity is 1000 mA g⁻¹ (b) the current density is 550 mA g⁻¹ and the limited capacity is 500 mA g⁻¹

Figure S12. XRD analysis chart of discharge products in a certain range.

Figure S13. SEM image of materials after circulation in different positions (a) Magnification is 20,000; (b) Magnification is 50,000; (a) Magnification is 40,000; (a) Magnification is 50,000

Figure S14. XRD patterns of the recycled lithium

		-	-	-	
Sample name	Ni	0	С	Ν	S
	(at. %)				
Ni ₃ S ₂ @N,S-PCT-900	1.8	11.06	76.51	7.73	2.91
Ni ₃ S ₂ @N,S-PCT-800	3.24	2.98	81.95	10.63	1.34
Ni ₃ S ₂ @N,S-PCT-700	1.88	4	83.96	9.13	1.03
N,S-PCT	0.53	2.7	85.67	10.07	1.17

Table S1. Elemental content percentage measured by XPS

with those of representative state-of-the-art cathodes reported in literature.								
Catalysts	Current Density	Overpotention (V)	Cycling Performance	First Discharge	Ref.			
	(mA g-		(Cycles/Limited	Capacity				
	1)		Capacity)	(mAh g ⁻¹)				
2D Co ₃ S ₄ nanosheets	100	0.92	25/500	5917	1			
Ni ₃ S ₂	200	1.29	50/500	7478	2			
MoS_2 nanoflakes	100	≥1.0	50/500	1250	3			
Ni ₃ S ₂ /PBSC NFs	100	0.68	120/500	12874	4			
Co ₉ S ₈	100	1.37	100/500	3500	5			
MoS _x /HRG	0.05	1.5	30/500	6678	6			
TiC/MWNTs-Ru	250	0.49	90/1000	3841	7			
GDP-Mo ₂ C@NCF	100	1.2	100/1000	7437	8			
NCS/S-3DPG	150	1.38	102/1000	14,173	9			
Co ₂ P/Ru/CNT	100	1.22	120/1000	12 800	10			
Ni ₃ S ₂ @N,S-PCT-800	450	1.45	148/1000	16733.7	This work			

Table S2. Comparison of Li-O₂ battery properties of Ni₃S₂@N,S-PCT-800 cathode

Figure S12 Lithium-air battery performance of different types of cathode materials

REFERENCE

- 1. P. Sennu, M. Christy, V. Aravindan, Y.-G. Lee, K. S. Nahm and Y.-S. Lee, *Chem. Mater.*, 2015, **27**, 5726-5735.
- 2. Q. Wang, X. Wang and H. He, J. Power Sources, 2020, 448, 227397.
- 3. M. Asadi, B. Kumar, C. Liu, P. Phillips, P. Yasaei, A. Behranginia, P. Zapol, R. F. Klie, L. A. Curtiss and A. Salehi-Khojin, *ACS Nano*, 2016, **10**, 2167-2175.
- 4. Z. Zhang, K. Tan, Y. Gong, H. Wang, R. Wang, L. Zhao and B. He, *J. Power Sources*, 2019, **437**, 226908.
- 5. G. Wang, Y. Li, L. Shi, R. Qian and Z. Wen, Chem. Eng. J., 2020, 396, 125228.
- L. Li, C. Chen, J. Su, P. Kuang, C. Zhang, Y. Yao, T. Huang and A. Yu, J. Mater. Chem. A, 2016, 4, 10986-10991.
- C.-S. Yang, Z. Sun, Z. Cui, F.-L. Jianga, J.-W. Denga and T. Zhang, *Energy Storage Mater.*, 2020, 30, 59-66.
- 8. Z. Sun, B. Li, C. Feng, X. Cao, X. Zheng, K. Zeng, C. Jin, X. Wu, D. Dai and R. Yang, *J. Mater. Chem. A*, 2020, **8**, 14815-14821.
- 9. S. Hyun, B. Son, H. Kim, J. Sanetuntikul and S. Shanmugam, Appl. Catal. B, 2020, 263, 118283.
- P. Wang, C. Li, S. Dong, X. Ge, P. Zhang, X. Miao, Z. Zhang, C. Wang and L. Yin, *Small*, 2019, 15, 1900001.