Supporting Information

Introducing visible-light sensitivity into photocatalytic CeO₂ nanoparticles by hybrid particle preparation exploiting plasmonic properties of gold: Enhanced photoelectrocatalysis exemplified for hydrogen peroxide sensing

Shuang Zhao¹, Marc Riedel², Javier Patarroyo³, Neus Bastus³, Victor Puntes^{3,4,5}, Zhao Yue^{6*}, Fred Lisdat^{2*}, Wolfgang J. Parak^{1,7*}

¹Fachbereich Physik, CHyN, Universität Hamburg, 22761, Hamburg, Germany
²Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745, Wildau, Germany
³Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
⁴Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Catalonia, Spain
⁵ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Catalonia, Spain
⁶Department of Microelectronics, Nankai University, 30071, Tianjin, China
⁷CIC Biomagune, 20014, San Sebastian, Spain
* corresponding authors: yuezhao@nankai.edu.cn, flisdat@th-wildau.de, wolfgang.parak@uni-hamburg.de

- I) Synthesis and characterization of nanoparticles
- II) Characterization of nanoparticle deposition in a flow system with quartz crystal microbalance measurements
- III) Characterization of nanoparticle deposition in a batch mode with UV/VIS absorption spectroscopy
- IV) Characterization of nanoparticle deposition in multiple layers with UV/VIS absorption spectroscopy
- V) Description of the used experimental set-up for measuring photocurrents
- VI) Photocurrent measurements
- VII) Stability and interference measurements
- VIII) References

I) Synthesis and characterization of nanoparticles

Materials for nanoparticle (NP) synthesis: Cerium(III) nitrate hexahydrate (99% trace metals basis), gold(III) chloride trihydrate (99% trace metals basis), silver nitrate (ACS reagent, >99.8%), potassium carbonate (ACS reagent, >99.0%), sodium citrate tribasic dihydrate (ACS reagent, >99.0%), tannic acid (ACS reagent), hydrogen peroxide (H₂O₂), cysteamine, poly(diallyldimethylammonium chloride) solution (PDDA), ascorbic acid, uric acid, dopamine, glucose, NaCl, KCl, and phosphate buffered saline tablets (PBS, pH 7.4 at 25°C) were purchased from Sigma-Aldrich (Steinheim, Germany). HCl and NaOH were obtained from ROTH (Karl Roth, Germany). There was not further purification of the reagents after receiving. Milli-Q water was used for all the aqueous solutions in this work.

Structural characterization: Transmission electron microscopy (TEM) images are shown in Figure SI-1 and Figure SI-2. X-ray diffraction (XRD) characterization is presented in Figure SI-4. Further characterization is available in a previous report ¹.

Figure SI-1: Representative high-angle annular dark field scanning TEM (HAADF-STEM) images of as-obtained colloidal $Au@CeO_2$ hybrid NPs, revealing the formation of a core of Au (~5 nm) surrounded by a relatively uniform CeO_2 shell.

Figure SI-2: High-resolution TEM (HRTEM) images revealing the details of the CeO_2 shell, which is composed of small NPs with sizes around 3-4 nm closely bound to the Au core.

Figure SI-3: TEM image of pure Au NPs and (b) the related size distribution $N(d_c)$ histograms from the core diameter (d_c) of the NPs. The mean diameter of the pure Au NPs is $d_c = 5.1 \pm 0.5$ nm. This corresponds well to the size of the Au part of the Au@CeO₂ hybrid NPs.

Figure SI-4: Number of counts N of the X-ray diffraction (XRD) in dependence of the angle Θ of hybrid Au@CeO₂ NPs. Two series of sets of diffraction peaks are present, which are assigned to the fluorite (cubic) CeO2 phase (JCPDS No 34-0394) and to the cubic Au phase (JCPDS No 04-0784). The diffraction peaks of the Au core are sharp and intense, while those of CeO₂ are broad and weak, accordingly with the small crystalline size of the CeO₂ nanoparticles composing the shell.

Optical NP characterization in water: The NPs were characterized in water by UV/VIS-absorption spectra and fluorescence spectroscopy. Absorption spectra showed a plasmon peak around 540 nm in the hybrid Au/CeO₂ core/shell NPs, in addition to the absorption of the CeO₂ NPs, which originates from the Au cores (Figure SI-5a). The fluorescence of Au/CeO₂ core/shell NPs showed the same peak as the pure CeO₂ NPs, and thus originates from the CeO₂ shell (Figure SI-5b). As control, Au NPs with similar size as the Au cores in the hybrid Au/CeO₂ core/shell NPs were prepared. The Au NPs had an absorption peak similar to the Au cores of the Au/CeO₂ hybrid NPs (Figure SI-5c).

Figure SI-5: *a)* Absorption and *b)* fluorescence spectra (with excitation at 290 nm) of pure CeO₂ and hybrid Au/CeO₂ NPs in water. Spectra were recorded in quartz cuvettes. *c)* Absorption spectrum of Au NPs in water.

Colloidal NP characterization in water: The NPs were characterized in water by a Malvern Zetasizer combining dynamic light scattering (DLS) and Laser Doppler Anemometry (LDA). The hydrodynamic diameters d_h of the three types of NPs were determined by DLS as 20 nm for the pure CeO₂ NPs, 15 nm for the Au/CeO₂ NPs, and 6 nm for the Au NPs. The DLS data are shown in Figure SI-6. The zeta-potentials ζ as determined with LDA are shown in Table SI-1.

Figure SI-6: DLS number distribution $N(d_h)$ of the hydrodynamic diameters d_h of a) pure CeO₂ NPs, b) hybrid Au/CeO₂ NPs, and c) Au NPs.

NP type	ζ [mV]		
CeO ₂	-39.7 ± 1.67		
Au/CeO ₂	-42.9 ± 0.1		

Table SI-1: Zeta potential ζ of pure CeO₂, and hybrid Au/CeO₂ NPs, as recorded in water with LDA.

Working electrodes: The working electrodes used in this work were 1 cm \times 1 cm gold chips. The structure layout was 500 µm glass/20 nm Ti/200 nm Au (Suzhou Research Materials Microtech Co. Ltd, China). In the measurements, the Au area exposed to the solution is $A_{chip} \approx 0.28$ cm² based on a circular electrochemical cell with 0.6 cm diameter.

II) Characterization of nanoparticle deposition in a flow system with quartz crystal microbalance measurements

Firstly, the mass of per NP was calculated by using the bulk densities ρ_{Au} =19.32 g/cm³ and ρ_{CeO2} =7.22 g/cm³, and the core diameter d_c (*i.e.* the inorganic NP part without the organic surface coating) as determined by transmission electron microscopy (TEM, cf. Figure 1 in the main article. For Au/CeO₂ NPs, when the NPs are assumed as a perfect sphere (cf. Figure SI-7), the volume of one Au core can be calculated as V_{Au} = $4/3 \times \pi \times (d_c(Au)/2)^3 = 96.9 \text{ nm}^3$. Based on this, the volume of the CeO₂ shell can be calculated as $V_{CeO2} = 4/3 \times \pi \times ((d_c(Au/CeO_2)/2)^3 - (d_c(Au)/2)^3) = 853.4 \text{ nm}^{3.2}$ Thus, the mass of one Au/CeO₂ NP (excluding the organic surface coating) is estimated to $m_{Au/CeO2} = \rho_{Au} \times V_{Au} + \rho_{CeO2} \times V_{CeO2} = 8.034 \times 10^{-18} \text{ g}$. For the CeO₂ NPs, the volume of one CeO₂ NP is $m_{CeO2} = 4/3 \times \pi \times (d_c(CeO_2)/2)^3 = 1595.4 \text{ nm}^3$. Thus, the mass of one CeO₂

Figure SI-7: Sketch, showing the dimensions of the Au/CeO_2 NPs and CeO_2 NPs, as derived with TEM.

The amount of NPs adsorbed to the surfaces (such as the Au electrodes) was determined by quartz crystal microbalance (QCM) measurements. In the case the energy dissipation parameters change (ΔD) is less than 10⁻⁶ per 5 Hz of frequency change (Δf), the mass loaded is proportional to the frequency change according to the Sauerbrey relation: $\Delta m'$ = $-C \cdot \Delta f/n$, where $\Delta m'$ is the mass change normalized to the surface area, C = 17.7 ng·Hz⁻¹cm⁻², and n is the overtone number.³ The Sauerbrey relation was used in this way for the calculation of the mass change $\Delta m'$ on a gold surface due to the adsorption of NPs. The experimentally determined frequency changes as shown in Figure SI-8 are $\Delta f_{CeO2} = -(14.343 \pm 0.096)$ Hz ($\Delta D = 0.9 \times 10^{-6}$, $\Delta D / \Delta f < 0.5 \times 10^{-6}$ Hz), and $\Delta f_{Au/CeO2} = (7.96 \pm 0.18)$ Hz ($\Delta D = 0.92 \times 10^{-6}$, $\Delta D / \Delta f < 0.5 \times 10^{-6}$ Hz). Thus, based on the Sauerbrey relation NP immobilization on the gold-quartz electrodes resulted in following mass changes: $\Delta m'_{CeO2} = (84.6237 \pm 0.5664)$ ng cm⁻², $\Delta m'_{Au/CeO2} = (46.964 \pm 1.062)$ ng cm⁻². Using the mass of one NP and the mass changes per area, the number of NPs per cm² is $n_{CeO2} = \Delta m'_{CeO2}/m_{CeO2} = (7.3\pm0.1)\times10^9$ cm⁻² and $n_{Au/CeO2} = (5.9\pm0.1)\times10^9$ cm⁻². This suggests a comparable NP surface loading for both types of NPs. In case of the CeO₂ NPs the percentage of electrode surface coated by NPs can be calculates as the number of NPs per surface area times the cross-section area of one NP (with d_c as derived from Figure 1): $n_{CeO2} \cdot \pi \cdot (d_c(CeO_2)/2)^2 \approx 1.2\%$ (note that here the spherical geometry of the NPs is neglected and thus a full coverage of 100% would not be possible) For the Au/CeO₂ NPs the surface coverage is $n_{Au/CeO2} \cdot \pi \cdot (d_c(Au/CeO_2)/2)^2 \approx 0.69\%$. This means, that the NP covering density of the Au electrodes is very low. Measurements with the QCM however were recorded under flow conditions within a short time span, in contrast to the electrode preparations for PEC measurements. Furthermore, the Au substrates were not identical for both cases. Thus, for the case of the Au electrodes used for PEC measurements higher coverage with NPs is expected. This was also checked by atomic force microscopy (AFM), in which a significant part of the electrode surface was found to be covered with NPs. A more detailed picture on the NP deposition on the gold electrodes has been obtained by UV/VIS absorption measurements as shown in § IV. All methods however, demonstrate that there is a higher coverage of the electrode with CeO₂ than with Au/CeO₂ NPs.

Figure SI-8: *QCM* analysis of the adsorption of CeO_2 and Au/CeO_2 NPs on the surface of Au electrodes, forming a single layer structure (Au/cysteamine/NPs). The measurements were carried out at 24 °C using Q-sense to monitor the changes in the resonances frequencies (Δf) and energy dissipation parameters (ΔD), with f = 5 MHz fundamental resonance quartz crystal frequency.

III) Characterization of nanoparticle deposition in a batch mode with UV/VIS absorption spectroscopy

Adsorption of NPs to the Au electrodes was further characterized by UV/VIS absorption spectroscopy in the air. The absorptions spectrum of Au electrodes modified with cysteamine only were used as reference blank, see Figure SI-9. Changes in absorption after addition of the NPs verified successful deposition of the NPs to the Au electrode. Comparing to the Au electrodes used in the PEC measurements, the Au electrodes used here do not contain a Ti intermediate layer between the glass substrate and the Au film, in order to improve light transmittance. The gold electrodes used here to measure the absorption spectra in air are 500 μ m glass/200 nm Au electrodes (Suzhou Research Materials Microtech Co. Ltd, China).

Figure SI-9: Sketch of the experimental set-up. a) First, a cysteamine modified gold electrode (Au/cysteamine) was fixed on an acrylic frame for obtaining a stable reference spectrum $A(\lambda)$. b) Afterwards, a single layer of NPs was immobilized on the Au/cysteamine electrode and the absorption spectrum was again recorded, whereby the reference spectrum was used as blank, i.e. was subtracted. The here plotted absorption spectrum $A(\lambda)$ corresponds to a single layer of Au/CeO₂ NPs.

IV) Characterization of nanoparticle deposition in multiple layers with UV/VIS absorption spectroscopy

In Figure SI-10 and Figure SI-11 the consecutive absorption spectra as recorded in air upon the subsequent assembly of NP layers are shown. The set-up is the same as shown in Figure SI-9. The absorption at 350 nm *versus* the layer number is shown in Figure 3b of the main manuscript. For the measurements of the absorption spectrum of an electrode with N layers of NPs, the absorption spectrum of the same electrode with N-1 layers of NPs was used as blank. For electrodes with just N = 1 layer of NPs (cf. Figure SI-9), the same electrode without NP layer was used as blank. Due to absorption of the glass substrate of the glass/Au electrode chips, only wavelengths $\lambda > 300$ nm were measured.

Figure SI-10, which has been recorded with CeO_2 NPs, shows no peak in the visible range. Increase of absorption with rising number of layers N demonstrates immobilization of the NPs. In contrast, in Figure SI-11, which has been recorded with Au/CeO₂ NPs, a clear peak can be found around 540 nm, which is due to absorption of the Au cores.

Figure SI-10: Differential absorption spectrum $\Delta A(\lambda)$ of gold electrodes with N layers of immobilized CeO₂ NPs. The spikes in the spectra are experimental artefacts.

Figure SI-11: Differential absorption spectrum $\Delta A(\lambda)$ of gold electrodes with N layers of immobilized Au/CeO₂ NPs. The spikes in the spectra are experimental artefacts.

From the differential absorption spectra of the characterized multilayer structures (Figure 3b, Figure SI-10 and Figure SI-11), the number of NPs of each layer per cm² (*n*) was calculated. The extinction coefficient $\varepsilon(\lambda)$ [*mL*·*ng*⁻¹/*cm*] could be calculated from solution spectra $A(\lambda)$, as recorded in a cuvette with pathlength $l_{solution}$ and a volume $V_{solution}$, in which $N_{Au/CeO2}$ Au/CeO₂ NPs are dissolved. Each Au/CeO₂ NP has a mass $m_{Au/CeO2}$ (*cf.* §II), and thus the total mass of NPs in solution is $N_{Au/CeO2}$.

 $A(\lambda) = \varepsilon(\lambda) \cdot c_{Au/CeO2} \cdot l_{solution}$

 $c_{Au/CeO2} = N_{Au/CeO2} \cdot m_{Au/CeO2} / V_{solution}$

 $\Rightarrow A(\lambda) = \varepsilon(\lambda) \cdot N_{Au/CeO2} \cdot m_{Au/CeO2} \cdot l_{solution} / V_{solution}$

 $\Rightarrow \varepsilon(\lambda) = A(\lambda) \cdot V_{solution} / (N_{Au/CeO2} \cdot m_{Au/CeO2} \cdot l_{solution}) = A(\lambda) / (c_{Au/CeO2} \cdot l_{solution})$

Knowing $\varepsilon(\lambda)$ also allows for determining the number of Au/CeO₂ NPs per area n_{Au/CeO_2} For a dried film with thickness l_{film} and volume V_{film} , which comprises N_{Au/CeO_2} NPs the absorption is

 $A(\lambda) = \varepsilon(\lambda) \cdot N_{Au/CeO2} \cdot m_{Au/CeO2} \cdot l_{film} / V_{film}$

 V_{film}/I_{film} is the area A_{cross} , on which $N_{Au/CeO2}$ Au/CeO₂ NPs are immobilized, which corresponds to the size of the electrode. The NP density *per* surface area is $n_{Au/CeO2} = N_{Au/CeO2}/A_{cross} = N_{Au/CeO2} \cdot I_{film}/V_{film}$.

 $\Rightarrow A(\lambda) = \varepsilon(\lambda) \cdot m_{Au/CeO2} \cdot n_{Au/CeO2}$

 $\Rightarrow n_{Au/CeO2} = A(\lambda)/(\varepsilon(\lambda) \cdot m_{Au/CeO2})$

Instead of deriving $\varepsilon(\lambda)$ from solution spectra it was done here by casting N drops of NP solution (total volume V_{drops}) with concentration $c_{Au/CeO2}$ ($\Rightarrow N_{Au/CeO2} = c_{Au/CeO2} \cdot V_{drops}/m_{Au/CeO2}$) with $N_{Au/CeO2}$ Au/CeO₂ NPs on the electrode and drying them to a film with thickness l_{film} and volume V_{film} . Upon evaporation the number of NPs remains constant, as does the absorption $A(\lambda)$, but the volume is reduced from V_{drop} to V_{film} .

 $\begin{aligned} A(\lambda) &= \varepsilon(\lambda) \cdot N_{Au/CeO2} \cdot m_{Au/CeO2} \cdot l_{film} / V_{film} = \varepsilon(\lambda) \cdot (c_{Au/CeO2} \cdot V_{drops} / m_{Au/CeO2}) \cdot m_{Au/CeO2} \cdot l_{film} / V_{film} \\ &= \varepsilon(\lambda) \cdot c_{Au/CeO2} \cdot V_{drops} \cdot l_{film} / V_{film} = \varepsilon(\lambda) \cdot c_{Au/CeO2} \cdot V_{drops} / A_{chip} \end{aligned}$

 $V_{film}/I_{film} = A_{chip}$ is the area of the electrode covered with the NP film, which is constant for all measurements. The active area of the electrode is a circle with diameter 0.6 cm, *i.e.* $A_{chip} = 0.28 \text{ cm}^2$.

 $\Rightarrow \varepsilon(\lambda) = A(\lambda) \cdot A_{chip} / (c_{Au/CeO2} \cdot V_{drops})$

Again, the surface coverage of such a film is

 $n_{Au/CeO2} = A(\lambda)/(\varepsilon(\lambda) \cdot m_{Au/CeO2})$

Thus, by measuring the absorption spectrum the surface coverage $n_{Au/CeO2}$ of the NPs can be calculated. This is shown for the Au/CeO₂ NP and the CeO₂ NP films in Table SI-2 and Table SI-3.

Method	N	V _{drops} [uL]	C _{Au/CeO2} [ng·mL ⁻¹]	$\begin{array}{c} A(\lambda) \\ (\lambda = 300 \\ nm) \end{array}$	ε(λ) [cm ² ·ng ⁻¹]	$n_{Au/CeO2}$ [cm ⁻²]	
casting N drops of NP solution followed by drying	1	30	10740	0.36	3.13×10 ⁻⁴	1.43×10 ¹¹	
	2	60	10740	0.54	2.34×10 ⁻⁴	2.88×10 ¹¹	
	3	90	10740	0.77	2.23×10 ⁻⁴	4.32×10 ¹¹	
					2.57×10-4 (mean)		
Method	N	-	-	$ \begin{array}{c} A(\lambda) \\ (\lambda = 300 \\ nm) \end{array} $	$arepsilon(\lambda)$ [cm ² ·ng ⁻¹]	n _{Au/CeO2} [cm ⁻²]	
Differential absorption from multilayer structure with N layers as used in Figure SI-11	1	-	-	0.28		1.36×10 ¹¹	
	2	-	-	0.3		1.46×10 ¹¹	
	3	-	-	0.28	2.57×10-4	1.36×10 ¹¹	
	4	-	-	0.3		1.46×10 ¹¹	
	5	-	-	0.29		1.41 ×10 ¹¹	
						1.41 ×10 ¹¹ (mean)	

Hybrid Au/CeO₂ NPs on the Au electrode ($m_{Au/CeO2} = 8.034 \times 10^{-18}$ g, $A_{chip} = 0.28$ cm²)

Table SI-2: The calculations of the extinction coefficient $\varepsilon(\lambda=300 \text{ nm})$ and the number of Au/CeO₂ NPs per cm² ($n_{Au/CeO2}$) on the Au electrode.

Method	Ν	V _{drops} [uL]	c _{CeO2} [ng·mL ⁻¹]	$A(\lambda)$ $(\lambda = 300 \text{ nm})$	$\varepsilon(\lambda)$ [cm ² ·ng ⁻¹]	n _{CeO2} [cm ⁻²]
casting N drops of NP solution followed by drying	1	30	18627	0.18 0.902×10 ⁻⁴		1.74×10 ¹¹
	2	60	18627	0.31	0.777×10 ⁻⁴	3.47×10 ¹¹
	3	90	18627	0.47	0.785×10-4	5.21×10 ¹¹
					0.821×10 ⁻⁴ (mean)	
Method	Ν	-	-	$A(\lambda)$ ($\lambda = 300 \text{ nm}$)	$\varepsilon(\lambda)$ [cm ² ·ng ⁻¹]	п _{СеО2} [ст ⁻²]
Differential absorption from multilayer structure with N layers as used in Figure SI-10	1	-	-	0.36		3.81×10 ¹¹
	2	-	-	0.38		4.02×10 ¹¹
	3	-	-	0.38	0.821×10-4	4.02×10 ¹¹
	4	-	-	0.4		4.24×10 ¹¹
	5	-	-	0.38		4.02×10 ¹¹
						4.02×10 ¹¹ (mean)

CeO₂ NPs on the Au electrode ($m_{CeO2} = 11.5 \times 10^{-18} \text{ g}, A_{chip} = 0.28 \text{ cm}^2$)

Table SI-3: The calculations of the extinction coefficient $\varepsilon(\lambda = 300 \text{ nm})$ and the number of CeO₂ NPs per cm² ($n_{Au/CeO2}$) on the Au electrode.

From the NP surface densities $n_{CeO2} = 4.02 \times 10^{11} \text{ cm}^{-2}$ and $n_{Au/CeO2} = 1.41 \times 10^{11} \text{ cm}^{-2}$ the surface coverages $n_{CeO2} \cdot \pi \cdot (d_c(CeO_2)/2)^2 \approx 66\%$ and $n_{Au/CeO2} \cdot \pi \cdot (d_c(Au/CeO_2)/2)^2 \approx 16\%$ could be calculated analogous to §II. In agreement with the QCM measurements from §II these data show higher coverage of the electrode with CeO₂ than with Au/CeO₂ NPs. However, the absorption spectrum data (which were recorded without flow) show much higher surface coverage than the QCM data (which were recorded with flow), and these numbers correspond better to the qualitative AFM data.

V) Description of the used experimental set-up for measuring photocurrents

Photocurrents were measured by a homebuilt photoelectrochemical system, whose photograph is shown in Figure SI-12. A detailed scheme of the set-up is shown in Figure SI-13. This system is based on previous set-ups⁴⁻⁷. A Faraday cage was used for eliminating electromagnetic interference.

A potentiostat from CH Instruments was used to apply a constant bias voltage U with a three-electrode system, including the working electrode (WE) of gold covered with the NPs, a counter electrode (CE) of Pt, and a reference electrode (RE) of Ag/AgCl 3 M NaCl. Photocurrents were amplified and rectified with a lock-in amplifier (EG&G Model # 5210). After that, the photocurrent was read in by a computer using LabVIEW software.

Figure SI-12: Photograph of the homebuilt PEC system.

Figure SI-13: *a)* Scheme of the photoelectrochemical system. b) The diagram of the photoelectrochemical measurement system. The working electrode (WE) was a gold electrode modified with CeO_2 or Au/CeO_2 core/shell hybrid NPs. A Pt wire and an Ag/AgCl (3 M NaCl) electrode were used as counter electrode (CE) and reference electrode (RE), respectively.

A detailed description of the teflon cell is shown in Figure SI-14a. The WE was fixed and well-sealed by an o ring between a teflon and aluminum sheet with the help of four screws. Conductive tapes were used electrically connect the WE for recording of the generated photocurrents. The hole size of the teflon cell was 6 mm, which determined the size of the illuminated spot of the WE ($A_{chip} \approx 0.28 \text{ cm}^2$).

A Xe-arc lamp (Ushio, Inc., Japan) was applied as white light source from 250 nm to 1100 nm. Focused by several lenses and modulated by a chopper, the light beam with 6 mm diameter spot size was finally illuminating the working electrode surface in a teflon cell. The modulation frequency was chosen as 71 Hz, which also was used as reference frequency of the lock-in amplifier. Different optical filters were used to obtain different colors from the white light. The filters were 340 ± 26 nm (BrightLine), 405 ± 10 nm (BrightLine), 470 ± 40 nm (CHROMA), 540 ± 25 nm (CHROMA), 620 ± 20

nm (CHROMA), 725 ± 50 nm (CarlZeiss), and 870 ± 50 nm (CHROMA). These bandpass filters allowed for transmission of ca. 80%-90% of the light intensity at the respective wavelengths. We did not measure the specific power hitting the electrode surface. The white light spectral distribution of the Xe-arc lamp is shown in Figure SI-14b.

Figure SI-14: a) Sketch of the electrochemical cell used in this work. b) Spectral distribution of the used Xe-arc lamp given as wavelength-dependent relative intensity $I(\lambda)$. This image has been taken from the webpage of the manufacturer (https://www.ushio.com/product/uxl-xenon-short-arc/).

VI) Photocurrent measurements

Figure SI-15: *Photocurrent at different bias potentials U recorded in 0.01 M PBS under white light illumination with Au/cysteamine electrodes without immobilized NPs.*

Figure SI-16: Chopped light voltammetry of gold electrodes modified with 5 layers of Au NPs in PBS with 5 mM H_2O_2 .

Figure SI-17: Wavelength dependence of the photocurrent $I(\lambda)$ recorded on Au electrodes modified with N = 5 layers CeO_2 NPs or 5 layers Au/CeO₂ NPs at a) U = -

300 and b) U = 300 mV vs. Ag/AgCl in 0.01 M PBS under illumination with light of different wavelengths λ .

Figure SI-18: Transient photocurrents I(t) at different bias potential U vs. Ag/AgCl from a) N = 5 layers CeO_2 NPs and b) N = 5 layers Au/CeO_2 NPs in 0.01 M PBS under illumination of white light.

Figure SI-19: Transient photocurrents I(t) as recorded on Au electrodes with different numbers N of NP layers and different bias potential U under white light illumination in 0.01 PBS. a) Au/CeO₂ NPs at U -500 mV. b) Au/CeO₂ NPs at U = 500 mV, c) CeO₂ NPs at U = -500 mV. d) CeO₂ NPs at U = 500 mV vs. Ag/AgCl.

Figure SI-20: Photocurrents I as recorded under white light in 0.01 M PBS pH=7.4 of Au electrodes modified with N layers of a) CeO₂ NPs and b) Au/CeO₂ NPs at different potentials U.

Figure SI-21: Cyclic voltammetric measurements without light of (a) 5 layers CeO_2 NPs and (b) 5 layers Au/CeO₂ NPs immobilised on gold electrodes in 100 mM PBS buffer pH = 7.4 and in buffer with 20 mM H₂O₂ using potential scanning from -600 mV to 600 mV vs Ag/AgCl. The scan rate was 5 mV/s.

Figure SI-22: Transient photocurrents I(t) recorded under while light illumination at different H_2O_2 concentrations $c(H_2O_2)$ recorded on Au electrodes with N = 5 layers of Au/CeO₂ NPs. The bias potentials U vs. Ag/AgCl with 3 M NaCl were a) -500 mV, b) - 300 mV, and c) -100 mV.

Figure SI-23: Transient photocurrents I(t) recorded under while light illumination at different H_2O_2 concentrations $c(H_2O_2)$ recorded on Au electrodes with N = 5 layers of CeO_2 NPs. The bias potentials U vs. Ag/AgCl with 3 M NaCl were a) -500 mV, b) -300 mV, and c) -100 mV.

Method	Material	LOD	Linear range	Sensitivity	Reference
PEC	Cu ₂ O/CoP nanostructures	100 nM	20-220 μM	16 mA cm ⁻² mM ⁻¹	8
PEC	Au NCs	2000 nM	30-5000 μM	131 nA cm ⁻² mM ⁻¹	9
PEC	PbS/C ₃ N ₄ NPs	1050 nM	10-7000 μM	-	10
PEC	NiOOH/Pt/Si nanostructures	2200 nM	10-60 mM	-	11
PEC	CeO ₂ NPs	27 μΜ	50-1000 μM	126 nA cm ⁻² mM ⁻¹	This work
PEC	Au/CeO ₂ NPs	3 µM	4-2000 μM	1150 nA cm ⁻² mM ⁻¹	THIS WOLK

Table SI-4: Comparison of the H_2O_2 sensing performance of different methods. CNTs = carbon nanotubes. NCs = nano clusters.

VII) Stability and interference measurements

Figure SI-24: Measurements of the photocurrent stability I(t) within 300 s with Au electrodes with a) N = 5 layers CeO_2 NPs and b) 5 layers Au/CeO_2 NPs, carried out in 0.01 M PBS pH 7.4 under white light illumination, with a bias U = -500 mV.

Figure SI-25: Photocurrent response of an Au electrode with N = 5 layers Au/CeO₂ NPs immersed in 0.01 M PBS (pH=7.4) upon successively adding H₂O₂ (final concentration $c(H_2O_2) = 1$ mM after addition), dopamine (DA) (final concentration 1 mM after addition), ascorbic acid (AA), uric acid (UA), glucose, NaCl and KCl (final concentratin 10 mM after each addition) at U = -500 mV vs. Ag/AgCl under white light illumination.

Figure SI-26: Verification of the storage stability of NP coated Au electrodes. The photocurrent response from Au electrodes immobilized with a) N = 1 single layer CeO₂ NPs, b) N = 5 multilayers CeO₂ NPs, c) N = 1 single layer Au/CeO₂ NPs, and d) N = 5 multilayers Au/CeO₂ NPs in 0.01 M PBS (pH=7.4) after having stored the electrodes for the time t at 4 °C. Photocurrents were recorded at U = -500 mV vs. Ag/AgCl under white light illumination. e) Percentual loss of photocurrent after t = 28 days storage.

Figure SI-27: Stability of photocurrent response after different storage times t (in PBS at 4 °C) of Au electrodes with N = 5 layers Au/CeO₂ hybrid NPs in 1 mM H₂O₂, recorded at U = -500 mV vs. Ag/AgCl under white light illumination. The 5 layers Au/CeO₂ electrode is storage for different time.

VII) References

- 1. N. G. Bastús, J. Piella, S. Perez, J. Patarroyo, A. Genc, J. Arbiol and V. Puntes, *Applied Materials Today*, 2019, **15**, 445-452.
- J. Hühn, C. Carrillo-Carrion, M. G. Soliman, C. Pfeiffer, D. Valdeperez, A. Masood, I. Chakraborty, L. Zhu, M. Gallego, Y. Zhao, M. Carril, N. Feliu, A. Escudero, A. M. Alkilany, B. Pelaz, P. d. Pino and W. J. Parak, *Chem. Mater.*, 2017, **29**, 399–461.
- 3. M. M. O. Thotiyl, H. Basit, J. A. Sánchez, C. Goyer, L. Coche-Guerente, P. Dumy, S. Sampath, P. Labbé and J.-C. Moutet, *J. Colloid Interface Sci.*, 2012, **383**, 130-139.
- 4. S. Zhao, J. Völkner, M. Riedel, G. Witte, Z. Yue, F. Lisdat and W. J. Parak, *Applied Materials and Interfaces*, 2019, **11**, 21830–21839.
- N. Sabir, N. Khan, J. Völkner, F. Widdascheck, P. d. Pino, G. Witte, M. Riedel, F. Lisdat, M. Konrad and W. J. Parak, *SMALL*, 2015, 43, 5844–5850.
- 6. W. Khalid, M. E. Helou, T. Murböck, Z. Yue, J.-M. Montenegro, K. Schubert, G. Göbel, F. Lisdat, G. Witte and W. J. Parak, *ACS Nano*, 2011, **5**, 9870-9876.
- 7. Z. Yue, W. Khalid, M. Zanella, A. Z. Abbasi, A. Pfreundt, P. Rivera_Gil, K. Schubert, F. Lisdat and W. J. Parak, *Anal. Bioanal. Chem.*, 2010, **396**, 1095-1103.
- 8. J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu and P. Chen, *Small*, 2017, **12**, 1700798.
- 9. Z. Shuang, Z. Jun, L. Zhengping, Z. Peixin and L. Yunxiao, *Microchimica Acta*, 2017, **184**, 1-10.
- 10. R. Li, Y. Zhang, W. Tu and Z. Dai, ACS Appl. Mater. Interfaces, 2017, 9, 22289-22297.
- 11. H. Li, W. Hao, J. Hu and H. Wu, *Biosens. Bioelectron.*, 2013, **47**, 225-230.