Supplementary Figures & Tables

Effective Electrocatalytic Methanol Oxidation of

Pd-based Metallic Glass Nanofilms

Baran Sarac*, Tolga Karazehir, Yurii Ivanov, Barbara Putz, A. Lindsay Greer, A. Sezai Sarac, Jürgen Eckert

Fig. S1 XRD results of PdAuSi MG film vs. Pd NF. The main peak positions are found by Pearson and pseudo-Voigt fitting for the Pd crystal and Pd-Au-Si MG NFs, respectively.

Fig. S2 EDX spectra of PdAuSi MG NF (green) and the base substrate (Si/SiO₂). Cu K and Cu L peaks are from the standard TEM grid made from Cu.

Fig. S3 E_{pf} and i_{pf} vs. MeOH concentration for the deposited Pd-Au-Si MG NFs.

Fig. S4. ECM of the EIS data given in Figure 2. (a) R(CR)(CR) Randles circuit model is used. (b) C_{dl} and C_{MOR} vs. potential. (c) R_{ct} and R_{MOR} vs. potential.

Fig. S5. E_{pf} vs. ½ In v for the deposited Pd-Au-Si MG NFs. The inset shows the results of the linear fit.

Fig. S6 Chronoamperometric study showing the stability of the Pd-Au-Si MG NF in 1M KOH + 1 M MeOH electrolyte at a constant voltage of -300 mV.

Table S1. ECM results at different potentials. R_s : solution resistance, C_{dl} : double layer capacitance, R_{ct} : charge-transfer resistance, C_{MOR} : capacitance due to MeOH – MG interactions, R_{MOR} : resistance due to MeOH – MG interactions, χ^2 : Chi-squared for the error of the Randles circuit at each potential.

Potential	Rs	$C_{\rm dl} \times 10^{-5}$	R _{ct}	$C_{\rm MOR} imes 10^{-5}$	R _{MOR}	<i>w</i> ²
(mV)	(Ω cm²)	(F cm ⁻²)	(Ω cm²)	(F cm ⁻²)	(Ω cm²)	χ-
-509	7.7	4.4	2.2	3.0	606	2.2*10 ⁻³
-459	7.5	3.4	1.8	2.5	660	7.9*10-4
-409	7.5	3.1	1.7	2.5	619	9.3*10 ⁻⁴
-359	7.6	2.8	1.8	2.5	545	8.4*10-4
-309	7.7	2.5	1.8	2.7	468	9.3*10 ⁻⁴
-259	7.7	2.5	1.8	2.5	376	6.6*10-4
-209	7.7	2.3	1.7	2.6	273	6.4*10-4
-159	7.7	2.4	1.7	2.8	177	6.6*10 ⁻⁴
-109	7.6	2.5	1.8	3.3	104	9.0*10 ⁻⁴