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Fig. S1 The SEM image of spiky Ni particles.
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Fig. S2 Fabrication of the dielectric layer with microstructure prepared from calathea zebrine leaf

or abrasive paper.
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Fig. S3 Experimental and calculated compression stress (pressure)-strain (thickness change) curves

of the 29.0 vol% spiky Ni/PDMS composite.
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Fig. S4 Dielectric constant (blue) and loss factor (red) of spiky Ni/PDMS composites as function of

filler volume percentage. The black curve is a fitting curve of percolation theory.
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Fig. S5 (a) The actual change of capacitance as a function of the applied pressure. (b) The loss

factor as a function of applied pressure.
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Fig. S6 (a) The SEM images of spherical Ni particles. (b) The change of capacitance as a function of

the applied pressure. (c) The percolation curve of the spherical Ni/PDMS dielectric layer.
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Fig. S7 The loss factor as a function of applied pressure, including data from the composites with

21.4 vol.%, 23.1 vol.%, 26 vol.%, 27.8 vol.%, 29.0 vol.% spiky Ni and pure PDMS.
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Fig. S8 The change of capacitance as a function of the applied pressure, and the linear fitting of the

sensitivity curves of two different composites.



Fig. S9 Digital photos of the traditional flexible film covering at the bottom of the flask.
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Fig. $10 Digital photos of the sensor covering at curved surface.
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Fig. S11 The change of capacitance as a function of the applied pressure at lower than 4 kPa. Since
the air pressure changes 1.2 kPa when the altitude increases by 100 meters, the equvalent
capacitance change is approximately 0.0672. That is, the linear coefficient between altitude and

capacitance change is 100/0.0672=1488.

Table S1. The characterization of the dielectric layer composites (calculated).

Sample Fitted Curve
21.4 vol% spiky Ni y=0.0018x+0.0374, R?=0.9633
23.1 vol% spiky Ni y=0.002x+0.0401, R2=0.9680
26.0 vol% spiky Ni y=0.0028x+0.0452, R?=0.9804
27.8 vol% spiky Ni y=0.004x+0.0456, R?=0.9918
29.0 vol% spiky Ni y=0.0058x+0.0337, R?=0.9951
31.0 vol% spiky Ni y=0.0085x+0.0264, R?=0.9844

Table S2. The characterization of the dielectric layer composites (experimental).

Sample Fitted Curve
pure PDMS y=0.0002x+0.1741, R?=0.7622
21.4 vol% spiky Ni y=0.0007x+0.3529, R?=0.8706
23.1 vol% spiky Ni y=0.0009x+0.4572, R?=0.8600
26.0 vol% spiky Ni y=0.001x+0.5094, R?=0.8499
27.8 vol% spiky Ni y=0.0022x+0.3753, R?=0.9857
29.0 vol% spiky Ni y=0.0046x+0.3208, R?=0.9985

31.0 vol% spiky Ni y=0.0053x+0.7706, R2=0.9665




Table S3. Typical sensitivities, working ranges and linearity of previously reported linear flexible

capacitive pressure sensors.

Detection

Sensitivity Re
Materials range SxLMR Linearity Journal

(kPa?) f

(kPa)

our work-flat surface  0.0046 0-1700 7.8 0.999 - -
our work-with leaf 0.0216 0-500 10.8 0.9978 - -
surface structure
our work-with  1.149 0-20 23.0 0.9989 - -
abrasive paper
surface structure
silver 0.00016 0-500 0.08 - Nanoscale [1]
nanowires/PDMS
carbon black/silicone 0.0002536 0-700 1.65 0.9981 Meas. Sci. [2]
rubber Technol.
PDMS/CIP with a hair- 0.28 0-10 2.8 0.981 J. Mater. Chem. [3]
like micro cilia array A
structure
microstructural single- 0.7 0-25 17.5 - Adv. Mater. [4]
walled carbon
nanotubes/PDMS
porous carbon 1.1 0-10 11.0 - Nanotechnolog [5]

black/PDMS y




Table S4. Typical sensitivities and working ranges of recently capacitive pressure sensors

Detectio

Sensitivity
Materials n range Journal Ref

(kPa)

(kPa)

PDMS dielectric layer with hollow 0.0014 (10-20 kPa) 10-120 Nano Energy [6]
micro-pillars 0.0005 (20-120 kPa)
MXene/PVDF-TrFE composite 0.51 (0-1 kPa) 0-400 ACS Appl. Mater. [7]
nanofibrous scaffolds as a dielectric 0.011 (10-150 kPa) Inter.
layer between PEDOT:PSS electrodes  0.006 (150-400 kPa)
PDMS pyramids 0.55 0-7 Nat. Mater. [8]
polyurethane/multiwalled carbon 0.753 (< 2 kPa) 0.1-50 ACS Appl. Mater. [9]
nanotubes 0.0549 (2-50 kPa) Inter.
PDMS film with uniformly distributed 1.18 0-0.02 Sensor. Actuat. [10]
micro-pores as a dielectric layer A-Phys.
AgNWSs/PDMS as the electrode, while 2.94 (0-1.5 kPa) 0-7 ACS Appl. Mater. [11]
PVDF as the dielectric layer 0.75 (1.5-7 kPa) Inter.
AgNWs/PDMS as the electrode, while 3.8 (0.045-0.5 kPa) 0.045-5 Nanoscale [12]
PVP or PMMA as the dielectric layer 0.8 (0.5-2 kPa)

0.35 (2-5 kPa)
porous film loading with ionic liquid 4.46 (< 0.5 kPa); 0-120 Mater. Today [13]
on the fabric skeleton, then coated 0.5 (0.5-10 kPa) Phys.
with AgNWs 0.0143 (10-120 kPa)
PVDF-TrFE interlocked microstructure 6.583 (0-0.1 kPa) 0-0.9 Small [14]

0.125 (0.1-0.9 kPa)
PDMS pyramids and 8.4 (0-8 kPa) 0-60 Nat. Commun. [15]

Polyisoindigobithiophene-siloxane

transistor

0.38 (8-60 kPa)

Video S1. The response of the sensor during it descends and ascends in water at certain speed.
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