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MD Simulations Details

All the simulations were carried out with the LAMMPS package.S1 The confined system

consisted in a fluid (water or methanol) between two parallel walls (Fig. S1), with periodic

boundary conditions applied in the directions parallel to the walls. For water simulations,

4096 water molecules were modeled with the TIP4P/2005 force field.S2 Two different kinds of

walls were considered. First, we modeled wall atoms which interact via a Lennard-Jones (LJ)

potential. The interaction parameters between LJ walls and water molecules were set fromS3

for hydrophobic walls corresponding, for TIP4P/2005 at 300 K, to a contact angle θ ∼ 134◦

(computed through the sessile droplet method, following a procedure described in Ref. S4).

The structure of the walls consisted in a frozen face centered cubic crystal constituted by

three atomic layers exhibiting a (001) face to the fluid, with a lattice parameter a = 5.356Å
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(Fig. S1). Second, we also simulated graphene walls with cross-interaction parameters taken

from Ref. S5, characterized by a contact angle θ ∼ 80◦ for TIP4P/2005 water at 300 K.

Figure S1: Modeled system constituted by a confined fluid between two planar solid walls.
The snapshot corresponds to TIP4P/2005 water enclosed by LJ walls. The arrows indicate
the shear velocity U directions by which the system is driven out of equilibrium for the shear
flow measurements.

For methanol (MeOH) simulations, 4056 molecules were modeled with the interaction

parameters given by Ref. S6,S7. For LJ walls and graphene we considered the same inter-

actions between atoms than the ones for water and the cross interactions MeOH-wall were

determined via Lorentz-Berthelot mixing rules. The surfaces were then characterized for

MeOH at 300 K by contact angles θ ∼ 100◦ and θ ∼ 0◦ for LJ and graphene walls respec-

tively. The wall dimensions were Lx = Ly = 58.92Å for the LJ wall, and Lx = 56.57Å,

Ly = 58.92Å for graphene. The pressure was set to 1 atm by using the top wall as a piston

during a preliminary run. The vertical height was then obtained by fixing the top wall at its

equilibrium position for the given pressure and it corresponded to H ∼ 40Å for water and

H ∼ 90Å for MeOH. We carried out an additional test, which consisted of 4 independent

calculations of water confined between Lennard-Jones walls at a given temperature of 300 K

and a given shear velocity of 10−4 Å/fs, leaving the top wall free to move around its equi-

librium position. Here, we compare these set of results to those reported in the main text.

The viscosity, friction coefficient and slip-length computed with freely moving walls, with an
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average height of the confined fluid Htop−free = 40.4 Å, were:

ηtop−free = 7.21× 10−4 ± 4.41× 10−5 Pa · s,

λtop−free = 2.25× 105 ± 3.62× 104 Pa · s/m,

btop−free = 32.3± 6.80 Å;

whereas with a fixed height of Htop−fixed = 40.2 Å we obtained:

ηtop−fixed = 8.10× 10−4 ± 8.47× 10−5 Pa · s,

λtop−fixed = 2.22× 105 ± 1.17× 104 Pa · s/m,

btop−fixed = 36.72± 5.81 Å;

concluding that both procedures are equivalent, providing the same results within the error

bars.

The temperature T was varied between 225 and 360K, by applying a Nosé-Hoover ther-

mostat to the liquid (only along the directions perpendicular to the flow for non-equilibrium

simulations). Equivalent results were obtained for different damping times, and with a

Berendsen thermostat.

To measure the hydrodynamic transport coefficients we performed non-equilibrium molec-

ular dynamics (NEMD) simulations applying a constant shear velocity U to the walls in

opposite x directions for each wall (see Fig. S1), producing a Couette (linear) velocity profile

far from the wall. The viscosity was measured from the ratio between the shear stress and

the bulk shear rate, η = τ/∂zvx, where vx corresponds to the velocity profile in the bulk

region in the direction of the flow. The friction coefficient λ was measured from the ratio

between the shear stress τ and the velocity jump at the interface ∆v = U − vx(zs), where

vx is the fitted bulk velocity profile in the direction of the flow evaluated at the effective

wall position zs. This effective wall position can be rationalized in terms of a Gibbs dividing
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plane (GdP) which corresponds to a partitioning of space between a region of homogeneous

liquid and vacuum (which would correspond to the wall region).S8 This GdP will define an

effective boundary condition at zs at a distance ∆ of the physical wall position. Considering

the physical distance between walls as H then the hydrodynamic height h will be given by

the relation h = H − 2∆. For a generic liquid, h is defined in terms of the GdP and it can

be expressed as h = N/(nbulkS), where N is the total number of liquid particles, nbulk bulk

number density and S the walls surface. The extension of this formula for a molecular liquid

is:

h =
M

ρbulkS
, (1)

where now M is the total liquid mass and ρbulk its bulk mass density. Because Eq. (1) relates

the hydrodynamic height to static density profiles quantities, the density bulk mass density

was computed from EMD simulations, computationally less expensive than the NEMD ones.

Both interfacial and bulk equations can be combined in the so-called “partial slip bound-

ary condition”,S9

∆v =
η

λ
∂zvx

∣∣∣
z=zs

= b∂zvx

∣∣∣
z=zs

, (2)

where the slip length b was measured from the relation b = η/λ.

Results

VTF, SA, Bässler laws: Theory

Viscosity temperature dependence is well described for liquids with strong intra-molecular

bonds by an Arrhenius law,

η = η0 · exp

(
A

T

)
, (3)

with activation energy A > 0. Nevertheless, fragile liquids, such as water, are characterized

by a faster increase. Several models are proposed in the literature.S10 Denoting the transport
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coefficient as X, the most accepted ones are the Vogel-Tammann-Fulcher (VTF) law,S11–S13

the Speedy-Angell (SA) law,S14 and the Bässler (B) law,S15 respectively:

X = X0 · exp
( A

T − Tf

)
, (4a)

X = X0 ·
( T
Tf
− 1
)−γ

, (4b)

X = X0 · exp

(( T
Tf

)2
)
. (4c)

All these laws introduce a singularity at a finite temperature Tf > 0 so their applicability is

restricted to temperatures away from this singularity. Specifically for water, while the above

laws provide a good effective description of the temperature evolution of dynamical quantities

down to deep supercooling (see below), they fail to describe the extreme supercooled region,

where a dynamical cross-over between a fragile and a strong behavior appears, which can

be captured by the two-state models of water.S16 Accordingly, Tf does not provide a good

indication of the true glass temperature transition of water.

VTF, SA, Bässler laws: Application to viscosity

We first computed the shear viscosity η from NEMD with LJ walls to assess the applicability

of the different temperature dependence laws to our simulation results, Eq. (3) and Eq. (4),

as done by previous experimental and numerical works.S7,S17–S20 For TIP4P/2005 water we

find good agreement between our data and a previous numerical work,S20 as shown in Fig. S2.

The fit results are reported in Table S1.

Due to the good agreement of VTF and SA fits with our numerical data (Fig. S3) we

performed χ2 and R2 tests to determine which one describes better the results. We obtained

{χ2,R2} = {8.47·10−5, 0.9994} for VTF and {χ2,R2} = {3.87·10−4, 0.9956} for SA therefore

concluding a better agreement with VTF.

For MeOH simulations viscosity temperature dependence is less strong than for water
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Figure S2: Shear viscosity NEMD measurements for TIP4P/2005 water. Our data set is
in good agreement with previous work performed for the TIP4P/2005f force field.S20 Three
different fits, VTF, SA and Bässler were performed.

Table S1: Fit parameters of VTF Eq. (4a) and Arrhenius Eq. (3) laws for TIP4P/2005
water and MeOH respectively. We appreciate the similarity of the temperature Tf and the
activation energy A between the different transport coefficients, η and λ, and between the
two different wall types, LJ walls and graphene. X0 units are [Pa s] for viscosity and [Pa
s/m] for friction.

TIP4P/2005 - VTF
Tf (K) A (K) X0

η 176.26± 1.35 329.10± 11.43 5.60 · 10−5 ± 3.72 · 10−6

λLJ 165.94± 2.68 357.20± 20.99 1.59 · 104 ± 1.70 · 103

λgraphene 153.80± 4.16 349.32± 27.33 1.60 · 103 ± 1.93 · 102

MeOH - Arrhenius
A (K) X0

η 1357.35± 22.25 5.22 · 10−6 ± 4.20 · 10−7

λLJ 1056.72± 35.63 8.11 · 103 ± 1.05 · 103

λgraphene 899.31± 36.71 3.43 · 102 ± 4.56 · 102

(Fig. S4). The results are in good agreement with previous workS7 and well described by an

Arrhenius law (Table S1).
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Figure S3: Different fits comparison for water shear viscosity. One can observe that our
results are globally well described by VTF and SA laws but not by Bässler law. In orange
the measure corresponding to T = 220 K, not taken into account for the fit due to its bigger
error. Nevertheless when extending the fit results to lower temperatures this point is well
described by VTF law but not by SA law, indicating the better suitability of VTF law for
our data, in agreement with the results of the χ2 and R2 tests performed.

Figure S4: Shear viscosity NEMD measurements for MeOH. An Arrhenius fit was performed
to our data set in order to describe viscosity temperature dependence.

VTF, SA, Bässler laws: Application to friction

For a given fluid, when varying the wall type we already see a difference in the absolute

value of λ being more than one order of magnitude bigger for LJ walls than for graphene

(Figs. S5,S8). This effect has already been appreciated and discussed in previous workS5,S21
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and it is due to graphene extreme smoothness, which makes the liquid-solid friction extremely

small (λ ∼ 1.7 · 104 Pa·s/m for water at 300K). The temperature dependence of friction can

be fitted by the same laws than viscosity (Figs. S6,S7). Indeed, in Table S1 we can see that

the law that better describes λ temperature dependence is in good agreement with the law

that describes the viscosity (VTF for water and Arrhenius for MeOH). However, although

very similar, the fit parameters for viscosity and friction are different beyond the error bars.

Figure S5: Liquid-solid friction coefficient results for TIP4P/2005 water from NEMD simu-
lations for graphene and LJ walls respectively. Although the temperature evolution is similar
for both walls, we can appreciate a one order of magnitude difference at a given temperature
between the different walls. Three different fits, VTF, SA and Bässler were performed.

Discussion on Eq. (3) of the main text

InS22 Bocquet and Barrat proposed a decomposition of the friction coefficient in different

static and dynamical quantities:

λ '
S(q‖)

2D(q‖)kBT

∫ ∞
0

dzρ(z)V 2
FS(z), (5)

where S(q‖) is the 2D structure factor in the contact layer, evaluated at the shortest wave

vector of the solid surface q‖, ρ(z) is the fluid number density, VFS the amplitude of the
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Figure S6: Different fits comparison for water-graphene friction coefficient. We can observe
that, as in the case of bulk water’s viscosity, our results are globally well described by VTF
and SA laws but not by Bässler law.

Figure S7: Different fits comparison for water-LJ walls friction coefficient. We can observe
that, as in the case of bulk water’s viscosity, our results are globally well described by VTF
and SA laws but not by Bässler law.

first mode of the Fourier decomposition of the fluid-solid potential energy, and D(q‖) is the

collective diffusion coefficient. D(q‖) can be expressed as D(q‖) = 1/(q2
‖τρ), where τρ is the

relaxation time of the intermediate scattering function F (q‖, t),

τρ =

∫ ∞
0

dtF (q, t) =

∫ ∞
0

dt
〈ρq‖(t)ρ−q‖(0)〉
〈ρq‖(0)ρ−q‖(0)〉

. (6)
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Figure S8: Liquid-solid friction coefficient results for MeOH for graphene and LJ walls
respectively. Although the temperature evolution is similar for both walls, we can appreciate
a much lower friction coefficient for graphene. An Arrhenius fit was performed.

We can then rewrite Eq. (5) in terms of τρ and the force corrugation fq‖ = q‖VFS as:

λ ≡ λSTAT · λDYN, with λSTAT ≈ S(q‖)

∫ ∞
0

dz ρ(z)f 2
q‖

(z), and λDYN ≈
τρ

2kBT
. (7)

It is interesting to note that in Bocquet and Barrat’s paper, for a LJ fluid, only one single

decay time for the density autocorrelation is considered, i.e. τρ ≡ τα, while in the case of

water it is of great importance for a full description to consider the total decay time, obtained

as the weighted sum of the two different decay times of F (q, t), i.e. τρ = (1−A)τβ +Aτα.S23

We tested the qualitative validity of Eq. (7) by plotting the ratio λ/(λSTAT · λDYN). In

Fig. S9 we can observe that for graphene and LJ walls this ratio remains constant with

temperature, verifying the suitability of Eq. (7) as a qualitative decomposition of friction

static and dynamic contributions temperature dependence.

Temperature dependence of the static structure factor

With regard to the T dependence of the static structure factor S(q), one can observe for bulk

in Fig. S10 the growth of a secondary peak for low wave vectors q when the temperature is
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Figure S9: Ratio between the friction coefficient λ measured from NEMD simulations and the
theoretical decomposition in static λSTAT and dynamic λDYN contributions from Eq. (7). We
can observe that the ratio remains constant with temperature, meaning a correct qualitative
description of λ temperature dependence by Eq. (7).

lowered. One also sees a small dependence on temperature of the maximum of S(q), located

around 3 Å−1. With regard to the interface, one can also see in Fig. S11 a small temperature

dependence of the maximum of S(q), located in a similar wave vector for both interface and

close to the bulk value. Nevertheless, for the interface it is not the S(q) value corresponding

to the maximum that should be taken into account to study friction temperature dependence,

but the one corresponding to the wall lattice vector, q‖, with q‖ = 1.66 Å−1 for LJ walls and

q‖ = 2.55 Å−1 for graphene, both surface wave vectors being represented with dotted black

line in Fig. S11, where we can see that we can consider them constant with temperature.

Calculation of the static contribution to friction

For graphene walls, we took the values for fq‖ from Falk et al.,S5 whose results are well

described by a fit, in arbitrary units, of the form fq‖ = B exp(−Az), with B = exp(14.79)

and A = 5.33 Å−1. For LJ wall, an analytical expression for the force corrugation was derived

by Steele.S24 In this case,

fq‖ =
4π

dLJ

εLJE1(z), (8)
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Figure S10: Temperature evolution of the static structure factor of bulk water. One can
observe a small temperature dependence of the maximum of S(q) located at q ∼ 3 Å−1 as
well as the appearance of a secondary peak at a lower wave vector q when lowering the
temperature.

Figure S11: Temperature evolution of static structure factor for water on graphene and
LJ walls, computed in the interfacial region, defined as the liquid region between the wall
and the first minimum of the liquid density profile. Black dashed line corresponds to the
shortest wave vector of the solid surface, q‖. We can observe that S(q‖) remains constant
with temperature. The temperature coloring scheme is the same as in Fig. S10.

where

E1(z) = 2πA6
[A6

30

(πdLJ

z

)5

K5

(2πz

dLJ

)
− 2
(πdLJ

z

)2

K2

(2πz

dLJ

)]
, (9)

S-12



with Kn being to the modified Bessel function of the second kind, εLS and σLS the LJ

interaction energy and size between liquid and solid atoms, dLJ the equilibrium distance

between solid atoms and A = σLS/dLJ. The force corrugation is represented as a function of

distance in Fig. S12 for both walls.

Figure S12: Squared force corrugation f 2
q , in arbitrary units, as a function of the distance

from the wall for LJ walls and graphene. We can observe a strong decay with increasing z.

The other structural parameter needed to compute the integral in Eq. (7) is the number

density profile. Its evolution with temperature can be found in Figs. S14,S13, where one

can observe a noisy region of the density profile close to the wall in the case of LJ walls.

In Fig. S15, representing the density multiplied by the force corrugation squared, one can

observe that this noise becomes significant for the highest temperatures when it is multiplied

by f 2
q‖

, which strongly increases when getting closer to the wall. In order to decrease such

noise, we considered a density behavior close to the wall as ndens = A exp(−B/zn) and fitted

this function for the LJ walls, obtaining n ∼ 2.5. We can appreciate in continuum line in

Fig S15 the results considering the fitted density profile. In Fig. S16 right we can compare

the original data with the fitted results integrals. We see that the main difference between

both data sets are for the two highest temperatures (the noisiest ones, T = {347, 360} K)

while the fitting procedure accurately describes the rest of the results. In Fig. S16 we can
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observe, for both walls, two different temperature behaviors of the static integral. For the

higher temperatures it behaves as a power law of the form b xa, with a ∼ 0.5 for graphene

and a ∼ 3 for LJ walls, while for the lower temperatures the integral remains constant with

temperature.

Figure S13: Oxygen number density profiles for water-graphene and water-LJ walls respec-
tively with the surface wall atoms located at z = 0 Å. The temperature coloring scheme is
the same as in Fig. S10.

Figure S14: Oxygen number density profiles for water-graphene and water-LJ walls respec-
tively with the surface wall atoms located at z = 0 Å, with a log scale for the density. The
temperature coloring scheme is the same as in Fig. S10.
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Figure S15: Product of oxygen number density ndens and the squared force corrugation f 2
q ,

in arbitrary units, as a function of the wall distance whose surface is located at z = 0 Å, for
graphene and LJ walls respectively. For LJ walls, the original data are represented in dashed
lines, and we can observe a noisy region at short distances for the highest temperatures.
In continuum line are represented the results of fitting the density at short distances as
ndens = A exp(−B/zn) in order to remove the noise. No fit was needed for graphene walls,
and the original data are represented in continuum line.

Figure S16: Static part integral from Eq. (7) as a function of temperature for water-graphene
and water-LJ walls respectively. For LJ walls the original and the fitted density data are
plotted. We can observe that the fit is in agreement with the data except for the two highest
temperatures, T = {347, 360}K. In dashed lines are represented the fits for the two different
temperature behaviors observed for both walls: a power law for high temperatures and a
constant value for the lower ones.

S-15



Characteristic times

Fig. S17 shows the results for the different characteristic times for bulk and interface obtained

from the fit of the intermediate scattering function F (q, t). We can observe that the long

relaxation time τα increases fast when decreasing temperature, while the short relaxation

time τβ remains constant. In this figure one can observe a small but systematic difference

between bulk and interfaces for τβ as well. The VTF fit results for the total relaxation time

τρ are shown in Table S2.

Figure S17: Characteristic times τα, τβ and τρ as a function of temperature for bulk water,
water-LJ wall and water-graphene interfaces. We can observe that the main dynamic contri-
bution for the transport properties temperature evolution comes from τα, while τβ remains
constant with temperature. A small but systematic difference between bulk and interface is
found for τβ. Nevertheless, because the main contribution at low temperatures to the total
relaxation time is τα, τρ is similar for bulk and the different surfaces.

Table S2: Fit parameters of VTF Eq. (4a) law for the total relaxation time τρ for TIP4P/2005
bulk water and confined between the two different wall types, LJ walls and graphene.

TIP4P/2005 - VTF
Tf (K) A (K) X0 (ps)

τρ bulk 165.69± 6.18 322.34± 41.23 3.70 · 10−2 ± 7.43 · 10−3

τρ LJ walls 144.76± 22.49 578.63± 213.33 2.06 · 10−2 ± 1.72 · 10−2

τρ graphene 157.58± 13.86 321.23± 83.51 4.58 · 10−2 ± 1.70 · 10−2
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Times comparison

Different approaches can be found in the literature in order to measure bulk characteristic

time.S25–S31 On the one hand, the question of which characteristic time is the main contri-

bution to viscosity temperature dependence remains open, i.e. whether the total decay time

τρ or only the long time behavior τα is needed. On the other hand, we can also wonder

about the suitability of different approaches to measure the τα decay time. In this paper, we

measured τα from Gallo et al. fitS32 for the intermediate scattering function F (q, t):

F (q, t) = [1− A(q)]e−(t/τs)2 + A(q)e−(t/τl)
γ

, (10)

with τα = τlΓ(1/γ)/γ where Γ(x) is Euler function. Because for high temperatures γ = 1,

sometimes a simple exponential decay has been considered for the long time behavior (τα

from 1/e approach in Fig. S18).S25–S30 Nevertheless, a better agreement should be found with

Eq. (10) by considering the weight A(q) (τα from A/e approach in Fig. S18).

In Fig. S18 left one can see that, globally, viscosity exponential decay with temperature

is captured by the characteristic time measured from the different approaches. Nevertheless,

the approach 1/e fails as an approximation of the F (q, t) fit while more similar results were

obtained when computing τα from the A/e approach.

In Fig. S18 right we compared the different τα measurements with the characteristic

time chosen to describe bulk dynamics in our paper: τρ. One can see that the temperature

behavior of τα is different than the one of τρ for any of the different approaches chosen, even

for τα from the full F (q, t) fit, where the different behaviors are clearer in the supercooled

regime.

Dq‖ and D0 comparison

In Fig. S19 we show the different temperature evolution for both diffusion coefficients. The

collective diffusion coefficient Dq‖ has been computed from the total density relaxation time
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Figure S18: On the left, characteristic times measured from different approaches for bulk
water as a function of temperature. In continuum line are represented their respective VTF
fits. On the right, characteristic times VTF ratio with respect to the characteristic time
considered in this work, τρ, in order to highlight their different temperature dependence.

τρ by the relation Dq‖ = 1/(q2
‖τρ). The self-diffusion coefficient D0 values are taken from.S20

We can observe that both diffusion coefficients are of the same order of magnitude around

room temperature, but their temperature evolution is quite different.
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