Supporting Information

Self-Templated Formation of (NiCo)₉S₈ Yolk-Shelled

Spheres for High Performance Hybrid Supercapacitors

Yi-Lin Liu^{a,b, 1}, Cheng Yan^{a,c, 1}, Gui-Gen Wang^{a,*}, Fei Li^a, Yang Shang^b, Hua-Yu Zhang^a, Jie-Cai Han^{a,c}, Hui Ying Yang^{b,*}

^aShenzhen Key Laboratory for Advanced Materials, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China <u>wangguigen@hit.edu.cn</u> (Gui-Gen Wang)
^bPillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore <u>yanghuiying@sutd.edu.sg</u> (Hui Ying Yang)
^cSchool of Chemistry, Faculty of Science, The University of Sydney, Sydney 2006, Australia
^dNational Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China

¹Y.L.L. and C.Y. contributed equally to this work.

Figure S1. (NiCo)₉S₈/C-600 sphere (a) elemental mapping of Ni, Co S and C, (b) EDS.

Spectrum. respectively.

Figure S2. SEM images of (NiCo)₉S₈/GC-400: (a) Low magnification; (b) High magnification.

Figure S3. SEM images of (NiCo)₉S₈/GC-800: (a) Low magnification; (b) High magnification.

Figure S4. XPS spectra of the as-obtained (NiCo)₉S₈/GC-400 spheres: (a) Ni 2p; (b) Co 2p; (c) S 2p and (d) C 1s.

Figure S5. XPS spectra of the as-obtained (NiCo)₉S₈/GC-800 spheres: (a) Ni 2p; (b) Co 2p; (c) S 2p and (d) C 1s.

Figure S6. BET measurements: Nitrogen adsorption/desorption isotherms and the poresize distribution. a-b) (NiCo)₉S₈/GC-400; c-d) (NiCo)₉S₈/GC-600; e-f) (NiCo)₉S₈/GC-800.

Figure S7. The electrochemical performance of the (NiCo)₉S₈/GC-400 spheres: (a) The

CV curves; (b) The discharge curves.

Figure S8. The electrochemical performance of the (NiCo)₉S₈/GC-800 spheres: (a) The

CV curves; (b) The discharge curves.

Figure S9. The cycling performance of the yolk-shelled (NiCo)₉S₈/GC-600 sphere.

Figure S10. CV curves of AC and yolk-shelled (NiCo)₉S₈/GC-600 sphere at the scan rate of 5 $mV s^{-1}$.

Figure S11. The electrochemical performance of AC: (a) The CV curves; (b) The

GCD curves; (c) Rate performance; (d) EIS curves.

Electrode composition	Electrolyt	Specific capacitance	Counter electrode	Cyclic stability	Ref.
(NiCo) ₉ S ₈	2M KOH	1434.4 F g ⁻¹ at 1 A g ⁻¹ /	Hg/HgO electrode	83.1 % after 5000 cycles	This work
NiCo ₂ S ₄ Nanoflakes[1]	2M KOH	908.1 F g ⁻¹ at 1 A g ⁻¹	saturated calomel electrode	87.7 % after 2000 cycles	S1
Porous NiCo ₂ S ₄ [2]	6M KOH	1268 F g ⁻¹ at 1 A g ⁻¹	Ag/AgCl electrode	82 % after 10000 cycles	S2
NiCo ₂ S ₄ Nanosheets[3]	1M KOH	1394.5 F g ⁻¹ at 1 A g ⁻¹	Ag/AgCl electrode	124 % after 10000 cycles	S3
NiCo ₂ S ₄ nanoparticles[4]	6M KOH	1090 F g ⁻¹ at 2 A g ⁻¹	Hg/HgO electrode	80.1 % after 3000 cycles	S4
NiCo ₂ S ₄ nanorod[5]	1M KOH	1130 F g ⁻¹ at 0.4 A g ⁻¹	Hg/HgO electrode	80 % after 1000 cycles	S5
NiCo ₂ S ₄ nanotubes[6]	1M KOH	1240 F g ⁻¹ at 1 A g ⁻¹	Hg/HgO electrode	80 % after 5000 cycles	S6
Co ₉ S ₈ /S-rGO[7]	6M KOH	708.3 F g ⁻¹ at 1 A g ⁻¹	Hg/HgO electrode	71.2 % after 2000 cycles	S7
Co ₉ S ₈ /GO[8]	6M KOH	540 C g ⁻¹ at 4 A g ⁻¹	Hg/HgO electrode	93.9 % after 1000 cycles	S8
CoNi ₂ S ₄ /Co ₉ S ₈ [9]	3M KOH	1183.3 F g ⁻¹ at 2 A g ⁻¹	Ag/AgCl electrode	98.1 % after 1000 cycles	S9

Table S1. Comparison of electrochemical performance between various hybrid pseudocapacitive electrodes and our work.

$Co_9S_8[10]$	1M KOH	514 F g ⁻¹ at 1 A g ⁻¹	Ag/AgCl electrode	88 % after 1000 cycles	S10

References

- [1] Y. Zheng, J. Xu, X. Yang, Y. Zhang, Y. Shang, X. Hu, Decoration NiCo₂S₄ nanoflakes onto ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor, Chem. Eng. J. 333 (2018) 111-121.
- [2] Q. Gao, X. Wang, Z. Shi, Z. Ye, W. Wang, N. Zhang, Z. Hong, M. Zhi, Synthesis of porous NiCo₂S₄ aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst, Chem. Eng. J. 331 (2018) 185-193.
- [3] Y. Liu, Z. Li, L. Yao, S. Chen, P. Zhang, L. Deng, Confined growth of NiCo₂S₄ nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors, Chem. Eng. J. 366 (2019) 550-559.
- [4] Y. Zheng, X. Wang, W. Zhao, X. Cao, J. Liu, Phytic acid-assisted synthesis of ultrafine NiCo₂S₄ nanoparticles immobilized on reduced graphene oxide as highperformance electrode for hybrid supercapacitors, Chem. Eng. J. 333 (2018) 603-612.
- [5] B. Li, B. Luo, J. Zhao, Y. Pan, H. Zhou, Y. Xiao, S. Lei, B. Cheng, high electrical conductivity-induced enhancement effect of electrochemical performance in mesoporous NiCo₂S₄ nanorod-based supercapacitor, J. Energy Storage 26 (2019) 100955.
- [6] Y. Chen, T. Liu, L. Zhang, J. Yu, NiCo₂S₄ Nanotubes Anchored 3D nitrogen-doped graphene framework as electrode material with enhanced performance for asymmetric supercapacitors, ACS Sustain. Chem. Eng. 7 (2019) 11157-11165.
- [7] Y. Yang, F. Ma, J. Wang, J. Li, J. Cao, W. Han, H. Gu, Y. Zhang, Comparative analysis of Co₉S₈/S-doped rGO composites as high-performance electrodes via facile one-step anneal fabrication for supercapacitor application, J.Alloy. Compd. 815 (2020) 152448.
- [8] B. Xie, M. Yu, L. Lu, H. Feng, Y. Yang, Y. Chen, H. Cui, R. Xiao, J. Liu, Pseudocapacitive Co₉S₈/graphene electrode for high-rate hybrid supercapacitors, Carbon 141 (2019) 134-142.
- [9] F. Zhao, W. Huang, H. Zhang, D. Zhou, Facile synthesis of CoNi₂S₄/Co₉S₈ composites as advanced electrode materials for supercapacitors, Appl. Surf. Sci. 426 (2017) 1206-1212.
- [10] T.-W. Lin, H.-C. Tsai, T.-Y. Chen, L.-D. Shao, Facile and controllable one-pot synthesis of hierarchical Co₉S₈ hollow microspheres as high-performance electroactive materials for energy storage and conversion, ChemElectroChem 5 (2018) 137-143.