Supplementary Information for

Microsphere-coupled light emission control of van

der Waals heterostructures

Hyunseung Lee,^a Van Tu Nguyen,^{a,b} Ji-Yong Park^a and Jieun Lee^{a,c*}

^a Department of Physics and Department of Energy Systems Research, Ajou University, Suwon

16499, Korea

^b Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, 100000,

Vietnam

^c Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

* To whom correspondence should be addressed, lee.jieun@snu.ac.kr.

Transition metal dichalcogenide, Microsphere, Purcell effect, Light-emitting transistor

Fig. S1 (a) Photoluminescence spectrum of monolayer WSe₂ showing the absence of the indirect gap emission. **(b)** Photoluminescence spectrum of monolayer MoS₂ showing the absence of the indirect gap emission. Both spectra are measured using the optical pump at 532 nm.

Fig. S2 (a) Photoluminescence enhancement of monolayer MoS_2 coupled to a microsphere with the diameter of 2 μ m. (b) Photoluminescence enhancement of monolayer MoS_2 coupled to a microsphere with the diameter of 7 μ m.

Fig. S3 (a) Temperature dependent PL spectra of the cavity-coupled and bare nearby WSe₂. Exciton emission peak is guided by the grey solid line. **(b)** Wavelength shift of the cavity-coupled exciton peak compared to the bare exciton as a function of temperature.

Fig. S4 (a) Time-resolved photoluminescence (TRPL) of monolayer WSe₂ coupled to microspheres with d = 2, 5, and 7 μ m. The measurement performed on bare WSe₂ without a microsphere is also shown for reference.

Sample /1 µm SiO2	Α	$ au_{Th}(\mathrm{ps})$	В	$ au_X$ (ps)
Bare	0.570	125 ± 5	0.422	766 <u>+</u> 49
2 μm	0.435	124 <u>+</u> 5	0.422	715 <u>+</u> 80
5 μm	0.635	60 ± 2	0.325	515 ± 26
7 μm	0.666	46 <u>+</u> 1	0.326	374 <u>+</u> 12

Table. T1 Fit parameters of TRPL data shown in **Fig. S3** using the biexponential function $I(t) = A\exp(-t/\tau_{Th}) + B\exp(-t/\tau_X)$. Here, τ_{Th} and τ_X are the thermal dissipation time of hot carriers and the exciton recombination lifetime and A and B are weight factors, respectively.

Fig. S5 (a) Optical microscope image of the WSe₂ light-emitting transistor. Monolayer WSe₂ is sandwiched by top and bottom *h*-BN. A voltage is applied through top (G_t) and bottom (G_b) graphene across *h*-BN/WSe₂/*h*-BN structure to induce electron-hole recombination in WSe₂. (b) Electroluminescence (EL) scan image of cavity-coupled WSe₂ light-emitting transistor. The white and blue dashed lines refer to the boundaries of WSe₂ and microsphere, respectively. (c) EL scan image on the same heterostructure without the microsphere. Scale bar is 3 μ m.