Supporting Information

A 3D mixed ion/electron conducting scaffold by insitu conversion for long-life lithium metal anodes

Huai Jiang^a, Qingyuan Dong^a, Maohui Bai^a, Furong Qin^a, Maoyi Yi^a, Junquan Lai^a, Bo Hong^{a,*}, Yanqing Lai^{a,b,*}

^a School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China

^b Engineering Research Centre of Advanced Battery Materials, The Ministry of Education, Changsha 410083, Hunan, China

*Corresponding authors.

Email addresses: bop_hong@csu.edu.cn (B. Hong), laiyanqing@csu.edu.cn (Y. Lai)

Tel. and Fax: +86 731 88830649

Figure S1. XPS full spectrum of as-synthesized Cu₃P NA@CF.

Figure S2. (a) SEM images of the Cu₃P NA@CF under the N/C of 1:1 at 100°C. (b) EDX spectrograms of Cu₃P NA@CF and corresponding elemental mapping images of Cu (c), P (d) and O (e).

Figure S3. (a) SEM images of the Cu₃P NA@CF under the N/C of 1:2 at 200°C. (b) EDX spectrograms of Cu₃P NA@CF and corresponding elemental mapping images of Cu, P and O.

Figure S4. SEM image of the Cu₃P NA@CF with different temperature of phosphating under the N/C of 3:1: (a) 220 °C; (b) 240 °C; (c) 260 °C; (d) 280 °C.

Figure S5. (a) SEM images of the Cu₃P NA@CF under the N/C of 3:1 at 240°C. (b) EDX spectrograms of Cu₃P NA@CF and corresponding elemental mapping images of Cu and P.

Figure S6. (a) SEM images of the Cu₃P NA@CF under the N/C of 3:1 at 260°C. (b)

EDX spectrograms of Cu₃P NA@CF and corresponding elemental mapping images of

Cu and P.

Figure S7. N₂ adsorption-desorption isotherm curve of Cu₃P NA@CF under the N/C

of 3:1 at 260°C.

Figure S8. The thickness of Cu₃P coating layer on Cu foam.

Figure S9. The Coulombic efficiency of Cu₃P NA@CF under the N/C of 1:2, 1:1 and 3:1 at 3 mA cm⁻² for 1 mAh cm⁻².

Figure S10. The Coulombic efficiency of the Cu_3P NA@CF with different temperature of phosphating under the N/C of 3:1 at 3 mA cm⁻² for 1 mAh cm⁻².

Figure S11. Voltage-capacity profiles for (a) PNF and (b) NF with a current density of 3 mA cm⁻² and a total capacity of 1 mAh cm⁻².

Figure S12. Voltage-capacity profiles for (a) PNF and (b) NF with a current density of 5 mA cm⁻² and a total capacity of 1 mAh cm⁻².

Figure S13. Voltage-capacity profiles for (a) PNF and (b) NF with a current density

of 8 mA cm⁻² and a total capacity of 1 mAh cm⁻².

Figure S14. Voltage-capacity profiles for (a) PNF and (b) NF with a current density of 5 mA cm⁻² and a total capacity of 3 mAh cm⁻².

Figure S15. The voltage–capacity curves of Cu₃P NA@CF in the first Li deposition.

Figure S16. CV curves of the lithiation and delithiation of Cu₃P NA@CF at a sweep

speed of 0.1 mV s $^{-1}$ from 0.01 to 3.0 V (vs. Li+/Li).

Figure S17. Magnification SEM images of the pristine and 200th stripping on Cu_3P NA@CF at 3 mA cm⁻² with a total capacity of 1 mAh cm⁻².

Figure S18. The cycling performance of 3D MIECS-Li||LiFePO₄ and CF-Li||LiFePO₄ cell at 5 C.

Figure S19. Rate performance between 3D MIECS-Li||LiFePO₄ and CF-Li||LiFePO₄

cell

Materials	Current density&Capacity	Cycle number	CE (%)	references
Unique 3D nanoporous/macroporo us structure Cu current collector	1 mA cm ⁻² , 1 mAh cm ⁻²	200	98	[1]
nitrogen-doped- carbon/ZnO modified Cu foam	3 mA cm ⁻² , 1 mAh cm ⁻²	400	97.6	[2]
Cu ₂ S nanowires inside the Cu framework	3 mA cm ⁻² , 1 mAh cm ⁻²	100	92	[3]
Lithiophobic- lithiophilic composite architecture	1.5 mA cm ⁻² , 1 mAh cm ⁻²	200	98	[4]
	5 mA cm ⁻² , 3 mAh cm ⁻²	50	96	
3D porous Cu current collector	0.5 mA cm ⁻² , 1 mAh cm ⁻²	70	97	[5]
A self-supported, three- dimensional porous copper film	1 mA cm ⁻² , 1 mAh cm ⁻²	97	120	[6]
Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton	3 mA cm ⁻² , 1 mAh cm ⁻²	94	100	[7]
A 3D mixed ion/electron conducting scaffold by in-situ conversion	3 mA cm ⁻² , 1 mAh cm ⁻²	600	99.1	
	5 mA cm ⁻² , 1 mAh cm ⁻²	170	98.2	this work
	5 mA cm ⁻² , 3 mAh cm ⁻²	80	99.35	

Li metal-based anodes reported recently

References

- 1 H. Liu, E. Wang, Q. Zhang, Y. Ren, X. Guo, L. Wang, G. Li and H. Yu, *Energy Storage Mater.*, 2019, **17**, 253-259.
- 2 Y. Zhou, K. Zhao, Y. Han, Z. Sun, H. Zhang, L. Xu, Y. Ma and Y. Chen, *J. Mater. Chem. A*, 2019, **7**, 5712-5718.
- 3 Z. Huang, C. Zhang, W. Lv, G. Zhou, Y. Zhang, Y. Deng, H. Wu, F. Kang and Q. Yang, J. Mater. Chem. A, 2019, 7, 727-732.
- 4 Y. Cheng, X. Ke, Y. Chen, X. Huang, Z. Shi and Z. Guo, *Nano Energy*, 2019, **63**, 103854.
- 5 Q. Li, S. Zhu and Y. Lu, Adv. Funct. Mater., 2017, 27, 1606422.
- 6 Y. Shi, Z. Wang, H. Gao, J. Niu, W. Ma, J. Qin, Z. Peng and Z. Zhang, *J. Mater. Chem. A*, 2019, 7, 1092-1098.
- 7 X. Ke, Y. Cheng, J. Liu, L. Liu, N. Wang, J. Liu, C. Zhi, Z. Shi and Z. Guo, ACS Appl. Mater. Inter., 2018, 10, 13552-13561.