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S1 Continuum-field Model of Molecular Op-
tomechanics

In this section, we present the continuum-field model of molecu-
lar optomechanics which follows the approach introduced by M.
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K. Dezfouli and S. Hughes.1 We initially derive equations for an
arbitrary number of vibrations in the molecule, and later show
that these vibrations can be typically treated as independent. This
section is divided into three subsections, which address separately
the derivation of the effective master equation for the molecular
vibrations, the formulas to compute the Raman spectrum, and the
demonstration that the quantum correlations between different
vibrational modes are typically small and can thus be ignored.

S1.1 Effective Master Equation

We consider off-resonant SERS and thus focus on the electronic
ground state of the molecule. We assume a parabolic poten-
tial energy surface for this state and model molecular vibra-
tions as quantized harmonic oscillators via the Hamiltonian Ĥm =

∑v h̄ωvb̂†
v b̂v, where ωv, b̂†

v and b̂v are the vibrational frequency and
the creation and annihilation bosonic operators of the vibrations,
respectively. The index v labels the different vibrational modes.
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On the other hand, the plasmonic response of the metallic nano-
structure can be described within the quantum theory of the elec-
tromagnetic fields in a dispersive and lossy medium2–4. In this
description, the Hamiltonian Ĥ f =

∫
d3r

∫
∞

0 dω h̄ω f̂† (r,ω) · f̂(r,ω)

accounts for the continuum of electromagnetic fields of the cavity
with frequency ω and creation f̂† (r,ω) and annihilation f̂(r,ω)

(noise) bosonic operators at position r. The quantized electric
field operator is expressed as

Ê(r,ω) = i
ω2

c2
0

∫
d3r′

√
h̄ε I (r′,ω)

πε0

←→
G
(
r,r′;ω

)
· f̂
(
r′,ω

)
, (S1)

determined by the imaginary part of the dielectric function
ε I (r′,ω) and the dyadic Green’s function, which is the solution
of the Helmholtz equation[

∇×∇×−ω2

c2
0

ε(r,ω)

]
←→
G
(
r,r′;ω

)
= δ

(
r− r′

)
, (S2)

with c0 speed of light and ε0 vacuum dielectric permittivity.

The molecule couples to the quantized electric field via the
interaction Hamiltonian1,5 Ĥint = − 1

2 p̂ · Ê(rm), where Ê(rm) =∫
∞

0 dω
[
Ê(rm,ω)+ Ê† (rm,ω)

]
is the electric field at the molecu-

lar position rm, and the induced dipole operator p̂ =←→α Ê(rm) is
given by the electric field Ê(rm) and the polarizability tensor←→α .
We can then expand ←→α with respect to the normal-mode coor-
dinates of the molecular vibrational modes v and focus on the
first-order term ∑v

←→
α v

(
b̂v + b̂†

v

)
, where the Raman polarizability

tensor ←→α v = Q0
v
←→
R v is determined by the zero-point amplitude

Q0
v =

√
h̄/(2ωv) and the Raman tensor

←→
R v of the molecular vi-

bration v. The zero-order term in the expansion of←→α is indepen-
dent of the molecular vibrations and is ignored here because it
leads to elastic scattering instead of inelastic Raman scattering as
considered in this work. Finally, we approximate the interaction
Hamiltonian as Ĥint ≈− 1

2 p̂ ·Ê(rm) with the induced Raman dipole
p̂≈ ∑v

←→
α vÊ(rm)(b̂v + b̂†

v).

To proceed, it is convenient to follow Ref. 1 and treat the
laser illumination as a classical field. This approximation cor-
responds to substituting the field operator Ê(rm) in the defini-
tion of the induced Raman dipole operator p̂ by the classical local
field 1

2 [E(rm,ωl)e−iωlt +E∗ (rm,ωl)eiωlt ] that excites the molecule.
We can then express the induced Raman dipole operator as p̂R ≈
1
2 ∑v(pve−iωlt +p∗veiωlt)

(
b̂v + b̂†

v

)
, with pv = Q0

v
←→
R vE(rm,ωl) for a

molecular vibration v. E(rm,ωl) corresponds to the local electric
field induced by the laser at the molecular position, taking into
account the plasmonic enhancement. The optomechanical inter-
action Hamiltonian can thus be written as

Ĥint ≈−p̂R · Ê(rm) , (S3)

where the electric field operator, explicitly appearing in eqn. (S3),
remains quantized (note that there is no 1/2 prefactor when writ-
ing the Hamiltonian in the classical-illumination approximation).
We focus on the slowly varying terms (rotating wave approxi-
mation), and finally obtain the following linearized interaction
Hamiltonian:

Ĥint ≈−i
1
2

∫
∞

0
dω

ω2

c2
0

∫
d3r

√
h̄ε I (r,ω)

πε0
·

{∑
v

(
b̂v + b̂†

v

)
· [p∗v ·

←→
G (rm,r;ω) · f̂(r,ω)eiωlt

−pv ·
←→
G ∗ (rm,r;ω) · f̂† (r,ω)e−iωlt ]}. (S4)

In the next step, we go from the Shcrödinger picture to the
interaction picture by transforming the interaction Hamiltonian
according to H̃int(t) = e(i/h̄)(Ĥm+Ĥ f )t Ĥinte−(i/h̄)(Ĥm+Ĥ f )t . After some
algebra, we achieve the following expression

H̃int (t)≈−i
1
2

∫
∞

0
dω

ω2

c2
0

∫
d3r

√
h̄ε I (r,ω)

πε0

{∑
v
(b̂ve−iωvt + b̂†

veiωvt)[p∗v ·
←→
G (rm,r;ω) · f̂(r,ω)e−i(ω−ωl)t

−pv ·
←→
G ∗ (rm,r;ω) · f̂† (r,ω)ei(ω−ωl)t ]}. (S5)

To clarify the notation used above, we can also write the prod-
ucts of the induced dipole vector and the dyadic Green’s tensor
explicitly as

p∗v ·
←→
G (rm,r;ω) · f̂(r,ω) = ∑

j,k
p∗v,kGk j (rm,r;ω) f̂ j (r,ω) , (S6)

pv ·
←→
G ∗ (rm,r;ω) · f̂† (r,ω) = ∑

j,k
pv,kG∗k j (rm,r;ω) f̂ †

j (r,ω) , (S7)

in terms of the different components pv,k, Gk j (rm,r;ω), f̂ j (r,ω),
f̂ †

j (r,ω) in the Cartesian coordinate system ( j,k = x,y,z).

We apply next the Born-Markovian approximation and obtain
the standard master equation for open quantum system6

∂

∂ t
ρ̃(t) =− 1

h̄2

∫
∞

0
dτtrR

{[
H̃int (t) ,

[
H̃int (t− τ) , ρ̃(t)ρ̃R

]]}
, (S8)

where ρ̃ and ρ̃R are the density operator of the molecular vibra-
tions and the electromagnetic field reservoir, respectively, and trR

is the trace over the reservoir. We also assume the following bath
relations for the electromagnetic field operators1

trR
{

f̂ j (r,ω) f̂ j′
(
r′,ω ′

)
ρ̃R
}
= 0, (S9)

trR

{
f̂ †

j (r,ω) f̂ †
j′
(
r′,ω ′

)
ρ̃R

}
= 0, (S10)

trR

{
f̂ †

j (r,ω) f̂ j′
(
r′,ω ′

)
ρ̃R

}
= 0, (S11)

trR

{
f̂ j (r,ω) f̂ †

j′
(
r′,ω ′

)
ρ̃R

}
= δ j j′δ

(
ω−ω

′)
δ
(
r− r′

)
. (S12)

By inserting eqn (S4) into eqn (S8), and using eqns (S9)-(S12),
one obtains eqn (S13):
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∂

∂ t
ρ̃(t) =− 1

4h̄πε0
∑
v,v′

∑
k

pv,k ∑
k′

p∗v′,k′
∫

∞

0
dω

ω2

c2
0

ω2

c2
0

∫
drε

I (r,ω)∑
j

Gk′ j (rm,r;ω)G∗k j (rm,r;ω)

×
∫

∞

0
dτ

{
ei(ω−ωl+ωv′ )τ

[
ρ̃(t)b̂v′e

−iωv′ t , b̂ve−iωvt + b̂†
veiωvt

]
+ ei(ω−ωl−ωv′ )τ

[
ρ̃(t)b̂†

v′e
iωv′ t , b̂ve−iωvt + b̂†

veiωvt
]}

− 1
4h̄πε0

∑
v,v′

∑
k

p∗v,k ∑
k′

pv′,k′

∫
∞

0
dω

ω2

c2
0

ω2

c2
0

∫
drε

I (r,ω)∑
j

Gk j (rm,r;ω)G∗k′ j (rm,r;ω)

×
∫

∞

0
dτ

{
e−i(ω−ωl−ωv′ )τ

[
b̂ve−iωvt + b̂†

veiωvt , b̂v′e
−iωv′ t ρ̃(t)

]
+ e−i(ω−ωl+ωv′ )τ

[
b̂ve−iωvt + b̂†

veiωvt , b̂†
v′e

iωv′ t ρ̃(t)
]}

. (S13)

Using the identity of the dyadic Green’s function4

(
ω

c0

)2

∑
j

∫
d3r′ε I (r′,ω)Gk′ j

(
r1,r′;ω

)
G∗k j

(
r2,r′;ω

)
= Im Gk′k (r1,r2;ω) , (S14)

evaluating the time-integral with the relationship∫
∞

0
dτe∓i(ω ′−ω)τ = πδ

(
ω
′−ω

)
∓ iP

1
ω ′−ω

, (S15)

(with P for the principal part), and applying the Kramer-Kronig
relationship7

P
∫ dω ′

ω ′−ω

ω ′2

c2
0

Im
←→
G
(
r,r′;ω

′)= π
ω2

c2
0

Re
←→
G
(
r,r′;ω

)
, (S16)

we can rewrite eqn (S13) as

∂

∂ t
ρ̃(t) =−i∑

v,v′
S−v′v (ωl −ωv′)

[
ρ̃(t)b̂v′e

−iωv′ t , b̂ve−iωvt + b̂†
veiωvt

]

+ i∑
v,v′

S+v′v (ωl −ωv)
[
b̂v′e
−iωv′ t + b̂†

v′e
iωv′ t , b̂†

veiωvt
ρ̃(t)

]

− i∑
v,v′

S−v′v (ωl +ωv′)
[
ρ̃(t)b̂†

v′e
iωv′ t , b̂ve−iωvt + b̂†

veiωvt
]

+ i∑
v,v′

S+v′v (ωl +ωv)
[
b̂v′e
−iωv′ t + b̂†

v′e
iωv′ t , b̂ve−iωvt

ρ̃(t)
]
, (S17)

with the spectral densities defined as

S+v′v (ω) =
1

4h̄ε0

(
ω

c0

)2
p∗v′ ·
←→
G (rm,rm;ω) ·pv (S18)

S−v′v (ω) =
1

4h̄ε0

(
ω

c0

)2
p∗v′ ·
←→
G ∗ (rm,rm;ω) ·pv. (S19)

Here
←→
G (rm,rm;ω) denotes the near-field dyadic Green’s function,

as in the main text. We have solved the master equation (S17)
and verified that the off-resonant terms involving two creation
or annihilation operators (e.g. b̂v′ b̂v) are usually several orders
of magnitude smaller than the resonant terms involving one cre-
ation and one annihilation operator (e.g. b̂v′ b̂

†
v). Therefore, it is

fully justified to ignore these off-resonant terms in eqn (S17) by
applying the rotating wave approximation.

In the next step, we adopt the following abbreviations:

Ω
±
v′v = S+v′v (ωl ∓ωv)+S−v′v (ωl ∓ωv′) , (S20)

Γ
±
v′v =−i[S+v′v (ωl ∓ωv)−S−v′v (ωl ∓ωv′)]. (S21)

By inserting eqn (S18-S19) into eqn (S20-S21) for v′ = v, we ob-
tain

Ω
±
vv =

1
2h̄ε0

(
ωl ∓ωv

c0

)2
p∗v ·Re

←→
G (rm,rm,ωl ∓ωv) ·pv, (S22)

Γ
±
vv =

1
2h̄ε0

(
ωl ∓ωv

c0

)2
p∗v · Im

←→
G (rm,rm,ωl ∓ωv) ·pv, (S23)

which correspond to eqn (2) and eqn (6) in the main text.
Using the relation b̂v′ b̂

†
v = b̂†

v b̂v′ + δv,v′ , and eqns (S20) and
(S21), we can rewrite eqn (S17) as

∂

∂ t
ρ̃(t) = i∑

v,v′

1
2
(
Ω
+
v′v +Ω

−
vv′
)[

b̂†
veiωvt b̂v′e

−iωv′ t , ρ̃(t)
]

−∑
v,v′

1
2

Γ
+
v′v

({
b̂v′e
−iωv′ t b̂†

veiωvt , ρ̃(t)
}
−2b̂†

veiωvt
ρ̃(t)b̂v′e

−iωv′ t
)

−∑
v,v′

1
2

Γ
−
v′v

({
b̂†

v′e
iωv′ t b̂ve−iωvt , ρ̃(t)

}
−2b̂ve−iωvt

ρ̃(t)b̂†
v′e

iωv′ t
)
.

(S24)

We note that there is a factor of 4 difference in the prefactor
of the last two lines of eqn (S24) with respect to the equa-
tions in Ref. 1, because we have defined the classical fields
as 1

2 [E(rm,ωl)e−iωlt + E∗ (rm,ωl)eiωlt ] (with the prefactor 1/2).
Transforming eqn (S24) back to the Schrödinger picture and in-
troducing the thermal pumping and the intrinsic decay rate γv of
the molecular vibrations, we obtain the effective master equation
for the reduced density operator ρ̂ of the molecular vibrations:

∂

∂ t
ρ̂ =− i

h̄

[
Ĥm + Ĥopt , ρ̂

]
+Dth [ρ̂]+Dopt [ρ̂] . (S25)

In this equation, the Lindblad term

Dth [ρ̂] = ∑
v

γv

2

{(
nth

v +1
)

D
[
b̂v
]

ρ̂ +nth
v D

[
b̂†

v

]
ρ̂

}
(S26)

describes the intrinsic decay and thermal pumping of molecu-

lar vibrations, where nth
v =

[
eh̄ωv/kBT −1

]−1
is the thermal vibra-
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tional population at temperature T (kB is the Boltzmann con-
stant). Here, D is the Lindblad super-operator D [ô] ρ̂ = 2ôρ̂ ô†−
ô†ôρ̂− ρ̂ ô†ô (for any operator ô). The Hamiltonian

Ĥopt =−∑
v,v′

h̄
2
(
Ω
+
vv′ +Ω

−
v′v
)

b̂†
v′ b̂v (S27)

describes the plasmon-induced vibrational frequency shift
− h̄

2
(
Ω+

vv +Ω−vv
)

(for v = v′) and the plasmon-mediated coherent
interaction between the molecular vibrations− h̄

2
(
Ω
+
vv′ +Ω

−
v′v
)

(for
v′ 6= v). Last, the terms

Dopt [ρ̂] =
1
2 ∑

v,v′

{
Γ
−
v′vD

[
b̂v, b̂

†
v′

]
ρ̂ +Γ

+
v′vD

[
b̂†

v , b̂v′
]

ρ̂

}
(S28)

describe the plasmon-induced vibrational damping Γ−vv and pump-
ing Γ+

vv (for v = v′) and the dissipative coupling Γ
−
v′v,Γ

+
v′v (for

v′ 6= v), where the super-operator is defined as D [ô, p̂] ρ̂ = 2ôρ̂ p̂−
p̂ôρ̂− ρ̂ p̂ô (for any operator ô and p̂).

To obtain the physical quantities of interest, we use eqn (S25)
to evaluate ∂

∂ t 〈ô〉(t) = tr
{

ô ∂

∂ t ρ̂(t)
}

and thus derive sets of equa-

tions for the expectation values 〈ô〉= tr{ôρ̂(t)} of different opera-
tors ô. Setting ô first to the operators b̂†

v b̂v and b̂†
v b̂v′ , we obtain the

equations for the population
〈

b̂†
v b̂v

〉
and the correlation

〈
b̂†

v b̂v′
〉

of different vibrational modes (v 6= v′) :

∂

∂ t

〈
b̂†

v b̂v′
〉
=−κvv′

〈
b̂†

v b̂v′
〉
+ηvv′

+ i∑
v′′

〈
b̂†

vbv′′
〉

v(1)v′′v′ − i∑
v′′

v(2)vv′′

〈
b†

v′′ b̂v′
〉
, (S29)

Here, we have used the abbreviations ω̃v = ωv − i 1
2 γv,

κvv′ = i(ω̃v′ − ω̃∗v ), ηvv′ = Γ
+
vv′ + δvv′nth

v γv, v(1)v′v = 1
2
(
Ω
+
v′v +Ω

−
vv′
)
−

i 1
2
(
Γ
+
v′v−Γ

−
vv′
)
, v(2)v′v = 1

2
(
Ω
+
v′v +Ω

−
vv′
)
+ i 1

2
(
Γ
+
v′v−Γ

−
vv′
)
. As shown

in the main text, it is convenient to introduce the effective op-
tomechanical damping rate

Γ
opt
v = Γ

−
vv−Γ

+
vv, (S30)

when we consider the vibrational population with eqn (S29) for
v = v′. In a similar manner, setting ô to b̂v and b̂†

v , we derive the
equations for the vibrational amplitudes

〈
b̂v
〉

and
〈

b̂†
v

〉
:

∂

∂ t

〈
b̂v
〉
=−iω̃v

〈
b̂v
〉
+ i∑

v′

〈
b̂v′
〉

v(1)v′v , (S31)

∂

∂ t

〈
b̂†

v

〉
= iω̃∗v

〈
b̂†

v

〉
− i∑

v′
v(2)vv′

〈
b̂†

v′

〉
, (S32)

which will be used later to determine the SERS spectrum.

To solve the system of equations (S29) efficiently, we first
express it in matrix form ∂x/∂ t = −

[
Γ− i

(
V (1)−V (2)

)]
x + λ ,

where x,λ are vectors and Γ,V (1),V (2) are matrices with ele-
ments xα =

〈
b̂†

v b̂v′
〉

, λα = ηvv′ , Γαβ = δαβ κvv′ , V (1)
αβ

= δv,v′′v
(1)
v′′′v′ ,

V (2)
αβ

= δv′,v′′′v
(2)
vv′′ . Here, we have defined the labels α = v× n+ v′,

β = v′′×n+ v′′′ with n the total number of the vibrational modes.

With the direct matrix inversion xss =
[
Γ− i

(
V (1)−V (2)

)]−1
λ ,

we obtain the steady-state solution xss (labelled by subindex ss).

In Subsection S1.3, we show that the correlations
〈

b̂†
v b̂v′
〉

(v 6= v′) between the three main Raman-active vibrational modes
considered in the main text are much smaller than their popu-
lations

〈
b̂†

v b̂v

〉
because these vibrational modes are strongly de-

tuned with respect to each other. In such a case, we can ignore
the correlations in eqn (S29) and the equations for the popula-
tion

〈
b̂†

v b̂v

〉
become independent for each vibrational mode. The

resulting equations correspond to eqn (1) in the main text.

S1.2 Expressions to Obtain the SERS Spectrum

In this subsection, we derive the expressions for the dif-
ferential scattered SERS power dP(ω)/dΩ. In the classical
electromagnetic theory of SERS8, dP(ω)/dΩ is evaluated as
dP(ω)/dΩ = S(ω)r2, where S(ω) = 1

2 ε0c0E∗(rd ,ω) ·E(rd ,ω) is the
time-averaged Poynting vector at the detector position rd (with
1
2
(
E(rd ,ω) e−iωt +E∗(rd ,ω) eiωt) the total scattered field at the

detector). Here r is the distance between the detector and the
molecule. The result of dP(ω)/dΩ for a detector at infinity
does not depend on r because the scattered field decays as 1/r.
The differential Raman cross-section can be directly computed as
dσ/dΩ = [dP/dΩ]/Ilas, with Ilas =

1
2 ε0c0E2

0 the laser intensity.

On the other hand, in the quantum description the differential
scattered power in the stationary regime can be expressed as:

dP
dΩ

= 2ε0c0r2 1
π

Re
∫

∞

0
dτ

〈
Ê†(rd ,τ) · Ê(rd ,0)

〉
e−iωτ , (S33)

with Ê(rd ,τ)+ Ê†(rd ,τ) the electric field operator at the detector
at time τ (note that, in contrast with the definition of the classical
electric field, there is no 1/2 prefactor in the definition of the elec-
tric field operator). Equation (S33) can be obtained by following
Ref. 9 (eqn. (5.256)) and Ref. 10 (Appendix 10.D).

To evaluate eqn (S33), we derive the Heisenberg equation
for the operator Ê(rd ,τ) with the linearized optomechanical in-
teraction Hamiltonian given in eqn (S4). Applying the Born-
Markov approximation and using eqns (S14) to (S16), we
can relate Ê(rd ,τ) with the creation and annihilation operators
of the molecular vibrations: Ê(rd ,τ) ≈ 1

2ε0
∑v

ω2

c2
0

←→
G (rd ,rm;ω) ·

pv e−iωl τ (b̂v(τ)+ b̂†
v(τ)). Note that within these approximations,

this operator explicitly includes the frequency ω. Inserting the
expression of Ê(rd ,τ) and its conjugate Ê†(rd ,τ) into eqn (S33),
we obtain the following expression for the differential scattered
power1:

dP
dΩ

= Re{∑
v,v′

Kvv′ (ω)
[
Sres,st

vv′ (ω−ωl)+Sres,as
vv′ (ω−ωl)

+So f f ,st
vv′ (ω−ωl)+So f f ,as

vv′ (ω−ωl)
]
}. (S34)

In this expression, the propagation factor is defined as

Kvv′ (ω) =
c0r2

2πε0
p∗v ·

[
ω2

c2
0

←→
G ∗ (rd ,rm;ω)

]
·

[
ω2

c2
0

←→
G (rd ,rm;ω)

]
·pv′ ,

(S35)
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and the frequency-dependent spectral densities are given by

Sres,st
vv′ (ω) =

∫
∞

−∞

dτe−iωτ
θ (τ)

〈
b̂v (τ) b̂†

v′ (0)
〉
, (S36)

Sres,as
vv′ (ω) =

∫
∞

−∞

dτe−iωτ
θ (τ)

〈
b̂†

v (τ) b̂v′ (0)
〉
, (S37)

So f f ,st
vv′ (ω) =

∫
∞

−∞

dτe−iωτ
θ (τ)

〈
b̂v (τ) b̂v′ (0)

〉
, (S38)

So f f ,as
vv′ (ω) =

∫
∞

−∞

dτe−iωτ
θ (τ)

〈
b̂†

v (τ) b̂†
v′ (0)

〉
. (S39)

Equations (S36-S37) are the resonant contributions to the Stokes
Sres,st

vv′ and anti-Stokes Sres,as
vv′ scattering, while eqns (S38-S39)

are off-resonant contributions. Equations (S36-S39) corre-
spond to the Fourier transform of the two-time correlations,〈

b̂v (τ) b̂†
v′ (0)

〉
,
〈

b̂†
v (τ) b̂v′ (0)

〉
,
〈
b̂v (τ) b̂v′ (0)

〉
,
〈

b̂†
v (τ) b̂†

v′ (0)
〉

, re-

spectively, where τ indicates the time difference from the steady
state labeled by 0. θ (τ) is the step function and ensures causality.

In the next step, we apply the quantum regression theorem11.
According to this theorem, the differential equations for

〈
b̂v
〉

are the same as for the two-time correlations
〈

b̂v (τ) b̂†
v′ (0)

〉
and〈

b̂v (τ) b̂v′ (0)
〉
, and those for

〈
b̂†

v

〉
are the same as those for the

correlations
〈

b̂†
v (τ) b̂v′ (0)

〉
and

〈
b̂†

v (τ) b̂†
v′ (0)

〉
. The initial values

of the two-time correlations are given by the steady-state values
(again indicated by subindex ss) as

〈
b̂v(0)b̂

†
v′(0)

〉
=
〈

b̂vb̂†
v′

〉
ss
=

δv′v +
〈

b̂†
v′ b̂v

〉
ss

,
〈
b̂v(0)b̂v′(0)

〉
=
〈
b̂vb̂v′

〉
ss, and

〈
b̂†

v(0)b̂v′(0)
〉
=〈

b̂†
v b̂v′
〉

ss
,
〈

b̂†
v(0)b̂

†
v′(0)

〉
=
〈

b̂†
v b̂†

v′

〉
ss

.

In our system the off-resonant terms
〈
b̂vb̂v′

〉
ss,
〈

b̂†
v b̂†

v′

〉
ss

are or-

ders of magnitude smaller than the resonant-terms
〈

b̂†
v b̂v′
〉

ss
both

for v = v′ and for v 6= v′, as confirmed by our calculations (not
shown). Therefore the contributions So f f ,st

vv′ (ω) and So f f ,as
vv′ (ω) to

the SERS spectrum can be ignored, which is analogue to the ap-
plication of the rotating wave approximation. We can thus sim-
plify the notation in the following by denoting Sres,k=st,as

vv′ (ω) as

Sk=st,as
vv′ (ω), i.e., dropping the superscript "res". Using eqns (S31),

(S32) and eqns (S36), (S37) , we obtain

∑
v′′

(
δvv′′ i(ω + ω̃v)− iv(1)v′′v

)
Sst

v′′v′ (ω) = δv′v +
〈

b̂†
v′ b̂v

〉
ss
, (S40)

∑
v′′

(
δvv′′ i(ω− ω̃

∗
v )+ iv(2)vv′′

)
Sas

v′′v′ (ω) =
〈

b̂†
v b̂v′
〉

ss
, (S41)

or, in matrix form, Mk=st,asxk,v′ = λ k,v′ , for efficient calcula-
tion. The elements of the vectors xst,v′ ,xas,v′ ,λ st,v′ ,λ as,v′ and of
the matrices Mst ,Mas are xst,v′

v = Sst
vv′ (ω) ,xas,v′

v = Sas
vv′ (ω) ,λ st,v′

v =

δv′v+
〈

b̂†
v′ b̂v

〉
ss
,λ as,v′

v =
〈

b̂†
v b̂v′
〉

ss
, Mst

vv′′ = δvv′′ i(ω + ω̃v)− iv(1)v′′v, and

Mas
vv′′ = δvv′′ i(ω− ω̃∗v )+ iv(2)vv′′ . The solutions are xk,v′ =

[
Mk]−1

λ k,v′ .

Last, taking into account that the off-diagonal elements
Sk=st,as

vv′ (ω) are negligible, we can simplify eqn (S34) as:

dP
dΩ

= ∑
v

[
K+

vv Re{Sst
vv (ω−ωl)}+K−vv Re{Sas

vv (ω−ωl)}
]
, (S42)

and eqns (S40) and (S41) as:

i
(

ω + ω̃v− v(1)vv

)
Sst

vv (ω) = 1+
〈

b̂†
v b̂v

〉
ss
, (S43)

i
(

ω− ω̃
∗
v + v(2)vv

)
Sas

vv (ω) =
〈

b̂†
v b̂v

〉
ss
, (S44)

which can be solved to obtain

Sst
vv (ω) =

(
1+
〈

b̂†
v b̂v

〉
ss

)
/
[
i
(

ω + ω̃v− v(1)vv

)]
, (S45)

Sas
vv (ω) =

〈
b̂†

v b̂v

〉
ss
/
[
i
(

ω− ω̃
∗
v + v(2)vv

)]
. (S46)

In the derivation of eqn (S42), we have replaced Kvv(ω) in eqn
(S34) by

K±vv = Kvv(ωl ∓ωv) =
c0r2

2πε0

∣∣∣∣∣ (ωl ∓ωv)
2

c2
0

←→
G (rd ,rm;ωl ∓ωv)pv

∣∣∣∣∣
2

,

(S47)
since the Raman lines are typically much sharper than Kvv(ω),
which depends on the comparatively broad plasmonic response.

By inserting eqn (S45) and (S46) into eqn (S42), we obtain the
differential radiative power for the Stokes and anti-Stokes scatter-
ing:

dPst

dΩ
= ∑

v

K+
vvγ+v /2(

ω−ω
+
v
)2

+
(
γ
+
v /2

)2

(
1+
〈

b̂†
v b̂v

〉
ss

)
, (S48)

dPas

dΩ
= ∑

v

K−vvγ−v /2(
ω−ω

−
v
)2

+
(
γ
−
v /2

)2

〈
b̂†

v b̂v

〉
ss
. (S49)

Here, we have used the expression of v(1)vv ,v(2)vv (found below eqn
(S29)) and defined the frequencies of the Stokes ω+

v = ωl −ωv +
1
2
(
Ω+

vv +Ω−vv
)

and anti-Stokes lines ω−v = ωl +ωv− 1
2
(
Ω−vv +Ω+

vv
)
,

as well as their line-widths γ+v = γ−v = γv +Γ
opt
v . We thus find that,

when the correlations are negligible, it is possible to treat molecu-
lar vibrations as independent from each other in the calculation of
the vibrational populations and the Raman spectrum. Equations
(S48) and (S49) are the same as eqn (7) and (8) in the main text.

S1.3 Negligible Correlation of Vibrational Modes
The expressions developed in Section S1.1 and S1.2 suggest that
quantum correlations

〈
b̂†

v b̂v′
〉

ss
could be established between dif-

ferent vibrational modes (v 6= v′) and that these correlations could
contribute to the SERS spectrum. However, according to eqn
(S29), the steady-state correlations

〈
b̂†

v b̂v′
〉

ss
are inversely pro-

portional to κvv′ = i(ωv′ −ωv) + (γv′ + γv)/2, while the steady-

state vibrational population
〈

b̂†
v b̂v

〉
ss

is inversely proportional to

κvv = γv. Since the three Raman-active vibrational modes of the
BPT molecule considered here are far away from each other in
frequency, i.e. ωv−ωv′ � (γv′ + γv)/2, we expect that |κvv′ | � κvv

(for ν 6= ν ′) and then the correlations should be much smaller
than the vibrational population. To verify this, we show in Fig.
S1 the evolution of the vibrational population of the three vibra-
tional modes, namely 1066 cm−1 (blue solid lines), 1269 cm−1

(red dashed lines), and 1586 cm−1 (green dotted lines), as well as
the imaginary part of the correlations between them (black solid,
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Fig. S1 Evolution of the vibrational population nv =
〈
b̂†

v b̂v
〉
of vibrational

mode v, and imaginary part of the correlations cvv′ = Im[
〈
b̂†

v b̂v′
〉
] between

vibrational modes v and v′, as a function of laser intensity Ilas. The results
are plotted for a laser wavelength of (a) 633 nm, (b) 670 nm and (c) 785
nm, considering the population of the three main vibrational modes of
the BPT molecule with frequencies (blue solid lines) ωv1 = 1066 cm−1,
(red dashed lines) ωv2 = 1269 cm−1 and (green dotted lines) ωv3 = 1586
cm−1. The black solid, dashed and dotted lines are the correlations cv2v1 ,
cv3v2 , cv1v3 between pairs of these vibrational modes. The temperature is
293 K (room temperature) and other parameters are the same as those
used in the main text.

dashed and dotted lines), as a function of laser intensity, and for
laser wavelength 633 nm (a), 670 nm (b) and 785 nm (c). We
focus on the imaginary part of the correlations because the real
part cancels out in eqn (S29) for the vibrational populations. As
expected, in all the cases considered, the correlations are orders
of magnitude smaller than the vibrational population. We find

a similar result for the real part of the correlations (not shown).
This result justifies ignoring the correlations when determining
the vibrational population and the SERS spectrum, and thus al-
lows us to consider vibrational modes independently, giving rise
to the simplified expressions derived in the end of Section S1.1
and S1.2, and presented in the main text.

S2 Identification of the Dipolar Contribution
in the Plasmonic Response

In this section we discuss in more detail the procedure to extract
the contribution of the Bonding Dipolar Plasmon (BDP) mode to
the plasmonic response, which was used in the main text to com-
pare the single-mode and continuum-field results, and emphasize
how the use of the former is often inaccurate. In the following,
we first indicate the expressions of the local electric field and the
dyadic Green’s functions associated with the BDP mode. Then,
we show that for the specific situation where the BDP mode dom-
inates the response, these expressions result in formally identical
expressions to those of the vibrational populations and the Raman
scattering as in previous works which considered a single discrete
plasmonic mode5,12,13. Finally, we provide the technical details
of the fitting in Section S2.1 and use the fitted values to extract
important properties of the plasmonic resonance.

For the single BDP mode, the local field induced by the laser
excitation at the position of the molecule rm can be expressed as
1
2 [E

s (rm,ω)e−iωt + Es,∗ (rm,ω)eiωt ], where Es (rm,ω) adopts the
following form:

Es (rm,ω) =−Es(rm,ωc)iκc/2
ωc−ω− iκc/2

, (S50)

with ωc and κc the frequency and the damping rate of the mode.
We use the super-script ’s’ through this section to emphasize that
we are dealing with the single-mode contribution. We can also
write this equation as a function of the field enhancement K at
resonance and laser amplitude E0 =| E0 | as:

Es (rm,ω) =−u(rm)KE0iκc/2
ωc−ω− iκc/2

. (S51)

Here, the mode function u(r) is defined as the ratio of the electric
fields at position r to the maximum module of the electric fields
in the gap. This function thus contains the information about the
spatial field distribution and field polarization.

The near-field and far-field dyadic Green functions follow

ω2

c2
0

←→
G s (rm,rm,ω)≈ B

ωc

2
u(rm)⊗u∗ (rm)

ωc−ω− iκc/2
(S52)

and
ω2

c2
0

←→
G s (rd ,rm,ω)≈C′

ω2

ω2
c

u(rd)⊗u∗ (rm)

ωc−ω− iκc/2
, (S53)

respectively. For the comparison with previous work (see below),
we can relate the proportionality factors B and C′ with the proper-
ties of the cavity according to B= 1

εgapVe f f
and C′ ∝ ω2

c
r

√
ωcκc

4h̄c0εgapVe f f
.

Here, the effective mode volume Ve f f can be calculated as the to-
tal integrated electromagnetic energy of the mode normalized by
twice the maximum energy of the electric fields at the gap of per-
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mitivity εgap (see eqn (3) in Ref. 14) and r is the distance to the
detector.

Introducing eqns. (S51)-(S53) into the eqns. (S22), (S23), and
(S47) in section S1, we obtain:

Ω
s,±
vv =

1
2h̄ε0

Q0
v
←→
R vEs (rm,ωl)

· ωc

2εgapVe f f

u(rm)⊗u∗ (rm)(ωc−ω)

(ωc− (ωl ∓ωv))
2 +(κc/2)2 Q0

v
←→
R vEs,∗ (rm,ωl) , (S54)

Γ
s,±
vv =

1
2h̄ε0

Q0
v
←→
R vEs (rm,ωl)

· ωc

2εgapVe f f

u(rm)⊗u∗ (rm)κc/2

(ωc− (ωl ∓ωv))
2 +(κc/2)2 ·Q

0
v
←→
R vEs,∗ (rm,ωl)

(S55)

for the optomechanical parameters and

Ks,±
vv ≈| r

√
c0

2πε0
C′

(ωl ∓ωv)
2

ω2
c

u(rd) ·u(rd)

ωc− (ωl ∓ωv)− iκc/2

×u∗ (rm) ·Q0
v
←→
R vEs (rm,ωl) |2 (S56)

for the propagation factor.

By careful comparison12,14,15, it can be seen that eqns. (S54)-
(S56) are fully consistent with those in previous literature5,12,13,
which treated the single mode as a discrete resonance. We note
that for this comparison we have ignored the optomechanical
coupling-induced plasmon frequency shift and the difference be-
tween the coherent and incoherent vibrational populations since
they are typically negligible for molecular optomechanics15

S2.1 Calculation of the Fitting Parameters for the Local Elec-
tric Field and the Dyadic Green’s Function within the
Single-mode Model

In this sub-section we discuss the fitting of the local electric field
and of the dyadic Green’s function implemented to extract the sin-
gle mode contribution from the full complex plasmonic response.
Since in our system the local electric field is mainly polarized
along the z direction, normal to the gold substrate, and the Ra-
man tensor is dominated by the zz-component due to the vertical
molecular orientation, we focus on the Ez, Gzz and G jz compo-
nents of the local field and of the near-field and far-field dyadic
Green’s function, respectively. For this particular case, we obtain
the following expressions from eqns (S50), (S52), and (S53):

|
Es

z (rm)

E0
|=
∣∣∣∣A κc/2

ωc−ω− iκc/2

∣∣∣∣ , (S57)

ω2

c2
0

Gzz (rm,rm,ω) = B
ωc/2

ωc−ω− iκc/2
, (S58)

ω4

c4
0

∑
j
|Gs

jz (rd ,rm,ω) |2 =C
ω4

ω4
c

(ωc/2)2

(ωc−ω)2 +(κc/2)2 , (S59)

with C =C′2/(ωc/2)2 in the last equation.

We fit simultaneously the results in Fig. 3 in the main text with

the output from eqns. (S57)-(S59) (see solid lines). We fit only
the results for wavelengths larger than 650 nm, because higher
order plasmonic modes, that are not included in the single-mode
model, strongly affect the response for smaller wavelengths. Sim-
ilarly, we only fit the imaginary part of the near-field dyadic
Green’s function, as the real part is also strongly influenced by the
plasmonic pseudo-mode (Section S3). Further, we choose to fit
the module of Es

z (rm) and not the phase as the former is the mag-
nitude present in eqns (S54) and (S55) for the simplified single-
mode description considered here. The fitting results are shown
as blue and red solid lines in Fig. 3 of the main text. They agree
very satisfactorily with the exact results from the continuum-field
model (blue and red dots) around the wavelength of the BDP
mode at 720 nm.

From these fittings, we can extract the single-mode plasmon
frequency h̄ωc = 1.726 eV, plasmon damping rate h̄κc = 0.136 eV,
as well as the following proportionality parameters: A = 391,
B= 2.09×10−3 nm−3 and C = 5.22×10−14 nm−6. Furthermore, by
assuming for simplicity a uniform mode function inside the NPoM
nanocavity, i.e. uz(rm)≈ 1, we can calculate the single-mode max-
imal field enhancement K = 391 from A, and the mode volume
Ve f f = 227.5 nm3 from B, according to the expressions of these
coefficients after Eq.( S53). Once these parameters of the single
mode are set, we can further determine other key parameters, as
for instance the plasmon-laser coupling (h̄Ωexc = 2 meV for Ilas =

1µW/µm2) and the optomechanical coupling (h̄gv = 0.032 meV,
0.027 meV and 0.052 meV for the 1066 cm−1, 1269 cm−1 and 1586
cm−1 vibrational mode, respectively). The exact definition and
expressions for these parameters can be found in Ref. 12 and Ref.
14.

S3 Dyadic Green’s Function of a Metal-
Insulator-Metal Structure

Many features in the optomechanical parameters are associated
with the contribution of the plasmonic pseudo-mode to the near-
field dyadic Green’s function

←→
G (rm,rm;ω) in the NPoM nanocav-

ity. At the same time, we have also pointed out that it is possible
to explain the effect of the pseudo-mode on

←→
G (rm,rm;ω) in terms

of the optical response of a flat Metal-Insulator-Metal (MIM) con-
figuration, which is the basic structure building up the NPoM gap.
To support this statement, we compare

←→
G NPoM (rm,rm;ω) (more

precisely, the zz−component along the direction normal to the
substrate) of the NPoM nano-cavity and

←→
G MIM (rm,rm;ω) of a

MIM structure formed by a dielectric spacer of the same thickness
(1.3 nm) and relative permittivity (εgap = 2.1), as the NPoM gap.
Consistent with the NPoM calculations (Section 4 in the main
text), we only consider here the scattering field or, equivalently,
the reflected field contribution of the dyadic Green’s function, i.
e. we do not include the contribution from the homogeneous infi-
nite medium of relative permittivity εgap. To compute the dyadic
Green’s function of the MIM structure, we follow the procedure
in Ref 16 and obtain GMIM

zz for the position r in the middle of the
insulator layer from

GMIM
zz (r,r;ω) =

i
4π

∫
∞

0
dkρ f p

zz
(
kρ

)
, (S60)
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Fig. S2 Comparison of the dyadic Green’s function of the NPoM and
the MIM structure. (a) Dependence of the absolute value of the real
part (red solid line) and imaginary part (blue dashed line) of f p

zz
(
kρ

)
for

the Metal-Insulator-Metal (MIM) structure, as a function of the ratio of
the radial wave number kρ to the wave-number in the middle layer k2
for wavelength 633 nm. Here, we consider the absolute value of the real
and imaginary parts in order to plot the results in logarithmic scale. The
upper and lower layers of the MIM structure are infinitely-thick and made
of gold and the middle insulator layer has a dielectric constant 2.1 and
a height of d = 1.3 nm. (b) Comparison of the real (red) and imaginary
(blue) part of the dyadic Green’s function Gzz (rm,rm;ω) (multiplied by
ω2/c2

0) for the molecule in the MIM structure (GMIM
zz , solid lines) and the

NPoM nano-cavity (GNPoM
zz , circles) as a function of wavelength.

which is determined by the contribution of the p-polarized field:

f p
zz
(
kρ

)
=

k3
ρ

k2
2k2z

2Fp exp(ikzd)
1−Fp exp(ik2zd)

. (S61)

Here, Fp = ε1k2z−ε2k1z
ε1k2z+ε2k1z

is the Fresnel reflection coefficient16, kl =
√

εlω/c0 and klz =
√

k2
l − k2

ρ are the wavevector and its z compo-
nent in the l-th layer of permittivity εl (l = 1 corresponding to any
of the two metal layers and l = 2 to the dielectric layer), and kρ is
the radial in-plane component of the wavevector (the same in all
layers).

Figure S2 (a) shows the dependence of the real part (red solid
line) and imaginary part (blue dashed line) of f p

zz
(
kρ

)
on the

normalized radial wave-number kρ/k2, for wavelength λ = 633
nm. The very sharp singularity at kρ = k2 appears because k2z =√

k2
2− k2

ρ in the denominator of eqn (S61) becomes zero. kρ < k2

corresponds to propagating waves in the metal, and kρ > k2 to

evanescent waves. Furthermore, there is also a maximum at
much larger kρ = kspp because 1−Fp exp(ik2zd) (also in the de-
nominator of eqn (S61)) becomes zero. Because kspp� k2,k1, we
have for this maximum k2z ≈ k1z ≈ ikρ , |Fp| ≈ | ε1−ε2

ε1+ε2
| ≈ 1.4253,

and kspp ≈− 1
d ln
∣∣F−1

p
∣∣≈ 0.27 nm−1. The field at kp ≈ kspp has an

imaginary wave-number in the z-direction and can be identified
as the surface plasmon mode. Last, there is an important con-
tribution of the field due to the integration over large kρ � kspp

components (i.e. f p
zz
(
kρ

)
remains large), which have been identi-

fied as localized surface wave modes17. For the MIM under con-
sideration and a wavelength of λ = 633 nm in Fig. S2(a), the
imaginary and real part of the dyadic Green’s function are mostly
determined by the surface plasmon mode and the surface wave
modes17, respectively (note that the integral in eq. S60 is multi-
plied by i).

For the conditions of interest in this work, we can exploit the
fact that the the dyadic Green’s function is mainly determined by
the kernel f p

zz
(
kρ

)
at large kρ to obtain approximate solutions.

We first obtain f p
zz ≈

k2
ρ

ik2
2

2Fp exp(−kρ d)
1−Fp exp(−kρ d)

by replacing k2z ≈ k1z ≈ ikρ ,

and then solve the integral in eqn (S60) to obtain the following
analytical expression: GMIM

zz (r,r;ω) ≈ Li3
(
Fp
)
/
(
πd3k2

2
)
. Here,

Lin (z) = ∑
∞
k=1 zk/kn is the polylogarithm function and the Fresnel

reflection coefficient can be approximated as Fp≈ ε1−ε2
ε1+ε2

. We have
verified that, for the results in this section, this analytical expres-
sion is a very good approximation to the numerical evaluation of
the integral in eqn (S60). For the latter, we use Cauchy’s integral
theorem to transform the integral along the real radial wavenum-
ber to an integral along the contour in the complex plane16,18.

Figure S2 (b) compares the real part (red circles) and imagi-
nary part (blue circles) of the dyadic Green’s function (multiplied
by ω2/c2

0) for the molecule in the NPoM nano-cavity with the cor-
responding results (red and blue lines) for the molecule in the
MIM structure. The results of the NPoM show a relatively narrow
feature near 720 nm due to the localized bonding dimer plasmon
mode, which is thus not present for the MIM structure. Besides
this difference, the results for the two structures under considera-
tion agree well with each other. Notably, we observe that in both
cases the imaginary part strongly increases for wavelengths ≤ 640
nm, and the real part presents a significant, approximately con-
stant, contribution that extends over large wavelengths. These
two features are key to understand many of the results in the
main text which can be interpreted in terms of the coupling of
the molecule with the MIM structure in the gap.

S4 Additional Numerical Results
In this section, we include and discuss additional numerical re-
sults which help to understand key aspects presented in the main
text.

S4.1 Raman Tensor of Biphenyl-4-thiol Molecule

We have compared the Raman activity of the vibrational modes of
an isolated biphenyl-4-thiol (BPT) molecule with the correspond-
ing values of a BPT molecule bonded to a single gold atom (Fig.
2 in the main text). All the calculations of the Raman activity and
Raman tensor components are performed within the Gaussian 16
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Table S1 Raman tensor components of the three main Raman-active
vibrational modes of a biphenyl-4-thiol molecule, in units of ε0Å2amu−1/2.

ωv(cm−1) Rxx Rxy,Ryx Rxz,Rzx Ryy Ryz,Rzy Rzz

1066 −3.2 1.5 −7.4 −9.0 −0.2 −32.2
1269 4.1 0.6 15.5 7.4 −0.9 67.0
1586 −4.5 −1.5 −26.4 10.4 −1.2 113.0

Table S2 Atomic coordinates of the biphenyl-4-thiol molecule and the
gold-bonded biphenyl-4-thiol molecule.

Biphenyl-4-thiol Gold-bonded Biphenyl-4-thiol
x (Å) y (Å) z (Å) x (Å) y (Å) z (Å)

C 1.66 -0.01 -0.02 C -0.20 0.02 0.039
C 2.39 -1.13 0.43 C 0.53 -1.12 0.44
C 3.78 -1.11 0.48 C 1.92 -1.11 0.46
C 4.48 0.03 0.08 C 2.63 0.04 0.08
C 3.77 1.15 -0.37 C 1.91 1.18 -0.32
C 2.38 1.13 -0.42 C 0.52 1.16 -0.34
C 0.18 -0.04 -0.08 S 4.40 0.10 0.22
C -0.58 1.10 0.24 C -1.68 0.00 0.02
C -1.98 1.08 0.19 C -2.42 1.15 0.37
C -2.66 -0.09 -0.19 C -3.81 1.13 0.35
C -1.91 -1.23 -0.51 C -4.50 -0.02 -0.03
C -0.52 -1.20 -0.45 C -3.78 -1.17 -0.38
S -4.43 -0.16 -0.27 C -2.39 -1.15 -0.36
H 1.85 -2.02 0.76 H 0.00 -2.01 0.77
H 4.32 -1.98 0.84 H 2.47 -1.99 0.78
H 5.56 0.05 0.12 H 2.46 2.07 -0.63
H 4.31 2.04 -0.68 H -0.01 2.04 -0.68
H 1.84 1.99 -0.80 Au 5.16 -0.67 -1.84
H -0.08 2.00 0.56 H -1.90 2.04 0.69
H -2.53 1.98 0.45 H -4.36 2.02 0.64
H -2.42 -2.14 -0.81 H -5.58 -0.03 -0.04
H 0.04 -2.09 -0.73 H -4.30 -2.07 -0.69
H -4.69 1.09 0.057 H -1.84 -2.04 -0.67

package19. We observe an enhancement of the Raman activity
due to the charge transfer between the BPT molecule and the sin-
gle gold atom, i.e. a chemical enhancement20,21. In Table 1 of
the main text we provided the values of the components of the
Raman tensor for the gold-bonded BPT molecule. To allow for a
more direct estimation of the chemical enhancement, we provide
here in Table S1 the components of the Raman tensor of the three
Raman-active modes for the isolated BPT molecule. These Raman
tensors are also used for the computation of the Raman scattering
of the isolated BPT molecule in vacuum in Section 7.3 of the main
text.

For the sake of completeness, in Table S2 we provide the
atomic coordinates for the BPT molecule and the gold-bonded
BPT molecule laying on the x-y plane, as used in our DFT calcula-
tions of the Raman tensor and the Raman activity. To obtain Table
1 in the main text and Table S1, we have rotated the molecules
around the y-axis by the appropriate angles to ensure that they
stand with an angle of 15 degree with respect to the z-axis, and
that the side of the molecule with the sulfur atom is at the bottom.

S4.2 Identification of Plasmonic Modes based on the Near-
field Maps

The scattering cross-section, the near-field enhancement and
the far-field dyadic Green’s function of the NPoM plasmonic nano-
cavity (Fig. 3(a) and (c) in the main text), show peaks around
720 nm and 580 nm, which are identified in the main text as the
Bonding Dipolar Plasmon (BDP) mode and the Bonding Quadru-
ple Plasmon (BQP) mode, respectively. To confirm this assign-
ment, we plot in Fig. S3 the near-field distribution corresponding
to these modes in side-view (upper panels) and top-view (lower
panels) cross-sections at the gap of the NPoM nano-cavity. In
these plots, x− z corresponds to the plane which contains the
wavevector of incidence illumination, which is p-polarized with
an angle of incidence of 55o with respect to the z-axis. The center
of the gap is at (x,y,z) = (0,0,0.65) nm. The size of the gap is
1.3 nm, and thus z = 0 and z = 1.3 nm define the points at the
surface of the bottom metal and at the facet of the top metallic
nanoparticle, respectively (see top panels of Fig. S3(a,b)).

The field induced in the gap is mostly polarized along the z-axis
normal to the surface and its imaginary part is larger than its real
part at the BDP and BQP resonances wavelength. We thus plot
Im{Ez/E0}, where we normalize the total local field by the ampli-
tude E0 of the incident field. Figure S3(a) shows that Im{Ez/E0}
is almost constant inside the gap at the BDP wavelength (720 nm),
but strongly decays outside. The induced surface charge density
associated to this mode changes its sign between the nanopar-
ticle surface and the substrate below, as schematically shown in
the upper panel of Fig. S3(a) at a particular instant of time (pos-
itive charge at the bottom, and negative charge at the top). This
field and charge distribution corresponds to the lowest-order ca-
pacitive polarization extended all over the gap, typical of the BDP

(a)

-- - -- - - ---
++ + ++ + + +++ -- - -

++ + +

+ +++

- -
--

Fig. S3 Imaginary part of the enhancement of the z-component of
the near-fields in a NPoM configuration induced by plane-wave laser il-
lumination, Im{Ez/E0}, relative to the incident amplitude E0. Upper
panels show a side-view cross-section of the NPoM gap, and lower pan-
els show its top-view cross-section. In (a) the bonding dipolar plasmon
(BDP) mode is shown at a wavelength of 720 nm, and in (b) the bonding
quadruple plasmon (BQP) mode at 580 nm. Both cross-sections contain
the center of the gap. The plus and minus signs on the surfaces indicate
the distribution of the positive and negative surface charge density asso-
ciated with each mode. The incident angle of the plane-wave excitation
relative to the normal of the substrate is 55o, as used in the main text.
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mode. In contrast, the field enhancement Im{Ez/E0} for a wave-
length of 580 nm shows two lobes of opposite sign in the gap (for
negative and positive x coordinates) as expected for a BQP mode
(the fields are not exactly anti-symmetric with respect to x = 0
because of retardation and the oblique illumination). The surface
charge density distribution corresponding to this mode, shown in
the upper panel of Fig. S3(b), indicates that the charges at the
upper and lower metallic surfaces are of opposite sign, but this
charge changes sign once along each surface, thus forming an
overall quadrupole-like distribution. We last note that these fields
and charge distributions are consistent with those found in simi-
lar configurations with a rigorous quasi-normal modes analysis in
Ref. 22, in spite of the different criteria of modes classification.

S4.3 Optomechanical Parameters for the Intermediate-
Frequency Vibrational Mode at 1269 cm−1

In Fig. 4 of the main text, the dependence of the parameters
Ω±vv and Γ±vv,K

±
vv on the laser wavelength is shown for the low-

frequency 1066 cm−1 and large-frequency 1586 cm−1 BPT vibra-
tional modes. We plot in Fig. S4 the corresponding results for
the intermediate-frequency 1269 cm−1 mode. The results in Fig.
S4(a) and in Fig. 4(a) and (d) in the main text show that the
dependence of Ω±vv on the laser wavelength is qualitatively simi-
lar for the three vibrational modes. This similarity occurs because
the spectral dependence of Ω±vv is mostly due to (i) the local elec-
tric field at the illumination frequency, which is not affected by
the change of the vibrational frequency, and (ii) the real part of
the dyadic Green’s function (affecting Ω±vv), which shows only a
relatively weak dependence on the laser wavelength, as observed
in Fig. 3(b) of the main text. Furthermore, also the propagators
K+

vv and K−vv show a similar behavior for the 1269 cm−1 vibrational
mode (Fig. S4(c)) when compared to the propagators of the other
two vibrational modes (Fig. 4(c) and (f) in the main text). How-
ever, the exact position of the maxima (and shoulders) shift as the
vibrational frequency ωv changes. The moderate dependence of
K+

vv and K−vv on the vibrational frequency ωv can be explained by
the small change produced in the evaluation frequency of the far-
field dyadic Green’s function

←→
G (rd ,rm;ω), at ωl−ωv and ωl +ωv,

respectively.

In contrast, when comparing Fig. S4 (b) with Fig. 4(b) and
(e) in the main text, one finds that the relative strength of the
vibrational pumping rate Γ+

vv with respect to the damping rate
Γ−vv strongly depends on the vibrational frequency. Notably, the
large dependence of Γ−vv on the vibrational frequency is mostly
due to the proportionality of this parameter with the imaginary
part of the near-field dyadic Green’s function at the anti-Stokes
frequency. The latter strongly increases for wavelengths smaller
than ≈ 650 nm due to the contribution of the plasmonic pseudo-
mode. The actual frequency where the near field is evaluated
directly depends on the frequency of the particular vibrational
mode, thus the energy of the vibration strongly influences the
value of Γ−vv. As a consequence, we find, for example, that the
window range where the vibrational pumping rate Γ+

vv is larger
than the damping rate Γ−vv, shrinks from [654.7 nm,705.4 nm] for
the low-frequency 1066 cm−1 vibrational mode (Fig. 4(b) in the
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Fig. S4 Dependence of the optomechanical parameters (a) Ω±vv , (b) Γ±vv
and (c) K±vv on the laser wavelength for the 1269 cm−1 vibrational mode of
the BPT molecule. These calculations complete the results shown in Fig.
4 of the main text for the other two vibrational modes of this molecule.
The blue lines correspond to Ω−vv, Γ−vv and K−vv (related to the anti-Stokes
scattering) and the red lines to Ω+

vv, Γ+
vv and K+

vv (related to the Stokes
scattering). The solid and dashed lines show results obtained within
the continuum-field model and the single-mode model, respectively. The
labels λBDP,BQP, λ as

BDP,BQP, and λ st
BDP,BQP are equivalent to the definition in

Fig. 4 of the main text. In (a) the blue and red dashed lines are scaled
by a factor of 10. Other parameters are the same as in Fig. 4 of the
main text.

main text) to [654.3 nm,689.7 nm] for the intermediate-frequency
1269 cm−1 mode (Fig. S4 (b)), and that no such window exists
for the large-frequency 1586 cm−1 mode (Fig. 4(e) in the main
text), as the pseudomode affects more strongly the latter.
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S4.4 Evolution of the Integrated Stokes Intensity for the
Low-Frequency Vibrational Mode at 1066 cm−1

Figure S5 compares the evolution of the integrated Stokes inten-
sity Sst with increasing laser intensity Ilas for the low-frequency
vibrational mode at 1066 cm−1, as obtained from the single-mode
model (dashed lines) and from the continuum-field model (solid
lines) at different incident laser wavelengths. This figure thus
completes the results of the vibrational population and the inte-
grated anti-Stokes intensity Sas shown in Fig. 6 (a) and (b) of the
main text for the same vibrational mode.

The main difference between the evolution of Sas and Sst is
that Sas is proportional to the vibrational population

〈
b̂†

v b̂v

〉
, i.e.

Sas = πK−vv

〈
b̂†

v b̂v

〉
, while Sst depends on 1 +

〈
b̂†

v b̂v

〉
, i.e. Sst =

πK+
vv(1+

〈
b̂†

v b̂v

〉
). In the thermal regime,

〈
b̂†

v b̂v

〉
is dominated by

the thermal population nth
v , which is typically much smaller than

1, making the Stokes signal much stronger than the anti-Stokes
signal.

Furthermore, in the vibrational pumping regime, the vibra-
tional population

〈
b̂†

v b̂v

〉
≈ nth

v + Γ+
vv/γv acquires an extra con-

tribution Γ+
vv/γv that scales linearly with Ilas (because the vibra-

tional pumping rate Γ+
vv is proportional to Ilas), and is added

to the thermal vibrational population. Taking into account that
K±vv ∝ Ilas, both Sas and Sst can thus potentially scale super-linearly
or quadratically with Ilas. This non-linear scaling can be observed
for the anti-Stokes scattering when Γ+

vv/γv is comparable to the
relatively small thermal vibrational population nth

v ≈ 5.4× 10−3

(at room temperature), but to observe it in the Stokes scattering,
Γ+

vv/γv needs to be similar to 1. Thus, the quadratic scaling can
only be observed in the Stokes scattering for much larger laser in-
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Fig. S5 Evolution of the integrated Stokes intensity for the 1066 cm−1

vibrational mode of the BPT molecule as a function of laser intensity
Ilas at incident laser wavelengths of 633 nm (black lines), 670 nm (red
lines), 705.9 nm (blue lines) and 785 nm (green lines). The solid lines
correspond to the results obtained with the continuum-field model and
the dashed lines to those obtained with the single-mode model. The
light blue, red and green background colors indicate the approximate
laser intensity range for the thermal regime (weak Ilas), the vibrational
pumping regime (moderate Ilas) and the regime of large laser intensity,
respectively. Other parameters are the same as those in Fig. 6 of the
main text.

tensity than in the anti-Stokes scattering. However, for such large
Ilas, the system enters into the regime of high intensity where
other effects can strongly modify the results (e.g. the divergence
of the SERS due to parametric instability, illustrated by the red
solid line in Fig. S5). It is thus often challenging to distinguish
the quadratic scaling of the Stokes scattering, for instance in the
red solid line of Fig. S5, from other effects, except for specific
laser wavelengths that lead to zero or very small effective op-
tomechanical damping rate (Γ

opt
v ≈ 0; blue solid line in Fig. S5).

We notice that for 633 nm and 785 nm (black and green solid
lines) the signal scales approximately linearly with laser intensity
for all Ilas considered because of the saturation of the vibrational
population for very intense illumination.

Significantly, the Stokes and anti-Stokes emission show similar
trends as Ilas becomes very large. Thus, for the regime of large
intensity where the main optomechanical effects of interest oc-
cur, the results and discussion about the anti-Stokes scattering
addressed in the main text also apply to the Stokes scattering.

S4.5 Laser Threshold to Reach the Vibrational Pumping
Regime

In Section 7 of the main text, we have discussed the laser thresh-
old intensity Ithr,1 required to achieve the vibrational pumping
regime. Note that Ithr,1 is defined as the laser intensity for which
the vibrational population induced by the laser equals the ther-
mal population. In Fig. S6, we investigate further the depen-
dence of Ithr,1 on (a) the laser wavelength at room temperature
T = 293 K and (b) the temperature for a given laser wavelength
of 710 nm. We plot the results for the low-frequency vibrational
mode at 1066 cm−1 (red lines) and for the large-frequency one at
1586 cm−1 (blue lines). We observe that Ithr,1 is smaller for a laser
wavelength range of [650 nm, 710 nm] due to the relatively larger
vibrational pumping rate (see Fig. 4(b) and (e) in the main text).
Importantly, Ithr,1 is about ten times smaller for the 1586 cm−1

vibrational mode because this mode is characterized by a larger
Raman tensor, and also by a smaller thermal vibrational popula-
tion. The threshold values Ithr,1 obtained are challenging to reach
with continuous-wave (CW) lasers but might be achievable with
pulsed lasers.

Furthermore, Fig. S6 (b) shows that for both the vibrational
modes at 1066 cm−1 (red lines) and at 1586 cm−1 (blue lines),
the threshold intensity Ithr,1 can be dramatically decreased by re-
ducing the temperature, in a way that Ithr,1 is at reach of CW
lasers. This is the case not only for a relatively small vibrational
decay rate h̄γv = 0.07 meV, as used through the paper (solid lines),
but also for a much larger vibrational decay rate h̄γv = 2.5 meV
(dashed lines). In short, the conditions to experimentally demon-
strate vibrational pumping25 in molecular optomechanics are at
reach by careful optimization of the incident laser conditions,
temperature of operation, molecular Raman activity, and specifics
of the plasmonic cavity.
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Fig. S6 Estimated laser threshold intensity Ithr,1 to achieve the vibra-
tional pumping regime for the 1066cm−1 (red line) and the 1586cm−1

(blue line) vibrational modes. Panel (a) shows Ithr,1 as a function of laser
wavelength at a temperature T = 293 K (room temperature), with in-
trinsic vibrational decay rate h̄γv = 0.07 meV. Panel (b) shows Ithr,1 as a
function of temperature for laser wavelength 710 nm and two intrinsic
vibrational decay rates, h̄γv = 0.07 meV and 2.5 meV. All the other param-
eters are the same as in Fig. 6 of the main text. We indicate the intensity
values typically achievable in current experiments with continuous-wave
(CW)23,24 and pulsed24 laser illumination, as marked on the right-hand
side of the panels.

S4.6 Laser Threshold to Reach the Parametric Instability
and Saturation of the Vibrational Population

The saturation of the vibrational population and the parametric
instability are achieved when the absolute value of the effective
optomechanical damping rate becomes comparable to the intrin-
sic vibrational decay rate, i.e.

∣∣∣Γopt
v

∣∣∣ ≈ γv. This condition defines

the laser threshold Ithr,2 to achieve these effects, as discussed in
the main text. The dependence of Ithr,2 on laser wavelength within
the continuum-field (solid lines) and single-mode (dashed lines)
models is shown in Fig. S7 for (a) the 1066 cm−1 and (b) the 1586
cm−1 vibrational modes, where the blue-(red-)colored sections of
each line indicate the illumination wavelengths that lead to para-
metric instability (saturation of the vibrational population).

Figure S7 (a) shows that, for the 1066cm−1 vibrational mode,
and according to the continuum-field model (solid lines), the
parametric instability (blue-colored section of the solid line) can
be achieved at a small range of laser wavelengths around 670 nm
for the 1066 cm−1 vibrational mode, and the saturation of the
vibrational population (red-colored sections) takes place outside
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Fig. S7 Laser threshold intensity Ithr,2 to achieve parametric instability or
saturation of the vibrational population for (a) the 1066 cm−1 and (b) the
1586 cm−1 vibrational modes, as predicted by the continuum-field model
(solid lines, labeled "c") and by the single-mode model (dashed lines,
labeled "s"). The color of the different section of the lines indicate the
laser wavelengths at which the parametric instability (sections in blue)
or the saturation of the vibrational population (sections in red) occur.
The intrinsic vibrational decay rate is set to h̄γv = 0.07 meV. All the other
parameters are the same as in Fig. 6 of the main text.

this wavelength range. The minimum laser threshold for these
two effects to occur is 1.87× 107µW/µm2 for a laser wavelength
of 680.6 nm, and 1.04× 107µW/µm2 for 742.4 nm. On the other
hand, the single-mode model (dashed lines) predicts the paramet-
ric instability and the saturation of the vibrational population for
laser wavelengths smaller and larger than 720 nm, respectively.
The more dramatic difference between the two models occurs for
laser wavelengths smaller than 650 nm, where the continuum-
field model predicts the saturation of the vibrational population
for laser thresholds comparable to those found for other laser
wavelengths, but the single-mode model suggests that the para-
metric instability is reached for an extremely large value of the
laser threshold.

Figure S7 (b) shows that for the 1586 cm−1 vibrational mode,
and within the continuum-field model (solid line), the saturation
of the vibrational population is expected for all laser wavelengths
considered (i.e. absence of parametric instability), and the min-
imum laser threshold is 3.17× 106µW/µm2. This threshold is
about 3 times smaller than that of the 1066 cm−1 vibrational mode
because the Raman tensor is significantly larger for the former. In
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contrast, within the single-mode model (dashed line), the trend
remains similar as for the 1066 cm−1 vibrational mode: the para-
metric instability is obtained for laser wavelengths smaller than
720 nm, and the vibrational population saturation for larger ones.

S4.7 Comparison with the Classical SERS Theory
In Fig. 7 of the main text, we study the dependence of the SERS
enhancement on the laser wavelength in different laser intensity
regimes for the 1586 cm−1 vibrational mode. In Fig. S8, we com-
pare the results for this mode in the thermal regime as obtained
within the continuum-field model (blue and red solid lines) and
as obtained according to classical electromagnetic theory of SERS
(blue and red dashed lines)8.

In the classical theory of SERS, the enhancement factors EF+
v

and EF−v of single-molecule Stokes and anti-Stokes scattering,
respectively, for a given vibrational mode of frequency ωv, are
typically estimated following the well-known recipe of the fourth
power of the local field enhancement8, (consistent with the reci-
procity theorem) as:

EF±v =
|Eloc(rm,ωl ∓ωv) ·

←→
R b

v ·Eloc(rm,ωl)|2

|Einc(rm,ωl ∓ωv) ·
←→
R i

v ·Einc(rm,ωl)|2
, (S62)

where Eloc(rm,ωl) represents the local electric field induced by
an incident laser of amplitude |Einc(rm,ωl)|. The enhancement
|Eloc(rm,ωl)|/|Einc(rm,ωl)| approximately corresponds to the re-
sults in Fig. 3 (a) of the main text.

←→
R i

v and
←→
R b

v are the Raman
tensor of the isolated molecule and that of the molecule bonded
to a gold atom (to account for the chemical enhancement), re-
spectively.

Figure S8 shows that the order of magnitude and the spec-
tral dependence of the Stokes (red lines) and anti-Stokes (blue
lines) SERS enhancement calculated from the continuum-field
molecular optomechanics description (solid lines) agree very well
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Fig. S8 Enhancement of the Stokes (red lines, left axis) and anti-Stokes
scattering (blue lines, right axis) as a function of laser wavelength for the
1586 cm−1 vibrational mode, and weak laser intensity Ilas = 1µW/µm2

(thermal regime). The solid and dashed lines are results based on the
continuum-field model and on classical SERS theory, respectively, and
the black solid line is the far-field scattering cross-section (scaled by a
constant factor for easier comparison). Other parameters are the same
as in Fig. 7 of the main text.

with the classical results obtained by applying eqn (S62) (dashed
lines). The differences between both results can be associated to
the fact that eqn (S62) is obtained from the application of the
optical reciprocity theorem8,26, which in our configuration is not
exactly fulfilled, as the far field is evaluated at 1 µm from the
NPoM structure.

For comparison, we also show in Fig. S8 the spectral shape
of the far-field scattering cross-section (black solid line). We ob-
serve that this does not match the SERS enhancement but it shows
a clear similarity, in particular when compared with the enhance-
ment of the anti-Stokes scattering near 720 nm, the wavelength of
the BDP mode. Thus, in the thermal regime, the scattering cross-
section can serve as a useful guide to qualitatively predict the
dependence of the SERS enhancement on the laser wavelength,
as typically implemented in many experiments27,28. Neverthe-
less, as shown in this work, care is needed when describing SERS
enhancement in complex plasmonic systems29,30.

S4.8 SERS Enhancement of the 1066 cm−1 Vibrational Mode

In Fig. 7 of the main text and in Fig. S8, we have studied the SERS
enhancement of the 1586 cm−1 vibrational mode as a function of
the wavelength of the excitation laser. In Fig. S9 we complete
these results with those for the 1066 cm−1 vibrational mode, to
illustrate the effects produced when considering a smaller vibra-
tional frequency.

Figure S9 (a) shows that the Stokes (red lines) and anti-Stokes
(blue lines) SERS enhancement for the 1066 cm−1 vibrational
mode is dominated by a broad spectral maximum in the ther-
mal regime (weak laser intensity, Ilas = 1µW/µm2 ), similar to
the 1586 cm−1 vibrational mode. The enhancement in this regime
is mostly dominated by the propagation factors K+,−

vv (see Fig.
4(c) and (f) in the main text), which depend only moderately on
the vibrational frequency. The main difference is that the Ra-
man emission for the 1586 cm−1 vibrational mode shows two
clear peaks, which gradually merge into one as the vibrational
frequency becomes smaller.

In the vibrational pumping regime (moderate laser intensity,
Ilas = 105µW/µm2), the general trends are also independent of
the vibrational frequency. The Stokes peak remains broad but the
anti-Stokes enhancement is sharper, as shown in Fig. S9 (b) for
the 1066 cm−1 vibrational mode, and in Fig. 7(b) of the main
text for the 1586 cm−1 one. This behavior occurs because the
anti-Stokes is proportional to the vibrational population, which in
the regime considered here increases more dramatically for laser
wavelengths around 720 nm.

The value of the vibrational frequency becomes very important
in the regime of large laser intensity Ilas. Figure S9 (c) shows
that for Ilas = 1.5×107µW/µm2, the dependence of the SERS en-
hancement on the laser wavelength becomes sharper for the 1066
cm−1 vibrational mode, which differs from the spectrally-broad
enhancement peak shown in Fig. 7(c) of the main text for the
1586 cm−1 vibrational mode. This difference is a direct conse-
quence of the behavior of the effective optomechanical damping
rate Γ

opt
v discussed in Section 6 of the main text. Γ

opt
v is posi-

tive at all laser wavelengths for the 1586 cm−1 vibrational mode,
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Fig. S9 Dependence of the Stokes (red lines, left axis) and anti-Stokes
(blue lines, right axis) enhancement on the laser wavelength, for the
1066 cm−1 vibrational mode and a laser intensity (a) Ilas = 1 µW/µm2,
(b) Ilas = 105µW/µm2 and (c) Ilas = 1.5×107µW/µm2. These results are
the counterpart of those in Fig. 7 of the main text for the 1586 cm−1

vibrational mode. Other parameters are the same as in Fig. 7 of the
main text.

so that increasing the laser intensity always leads to the satura-
tion of the vibrational population. However, for the 1066 cm−1

vibrational mode, a wavelength window exists where Γ
opt
v < 0.

In this window the signal increases non-linearly for sufficiently
large intensity until the response becomes divergent (parametric
instability). A larger negative Γ

opt
v < 0 leads to a faster non-linear

increase, which results in the spectral sharpening shown in Fig.
S9 (c).

S4.9 Optomechanical Parameters of the Molecule in Vacuum

In Section 7.3 of the main text and Section S4.7 and S4.8, we
have studied the enhancement of the Raman scattering, which
requires the normalization of the Raman signal of the molecule
in the NanoParticle-on-a-Mirror (NPoM) gap to the signal for a
molecule in vacuum (or air). For this comparison, we need to ob-
tain the optomechanical parameters of the molecule in vacuum.
We show the dependence of the optomechanical parameters on
the laser wavelength in Fig. S10 for the 1066 cm−1 vibrational
mode with a laser intensity Ilas = 1µW/µm. For these calculations,
we have used the values of the Raman tensor of the molecule in
vacuum from Table S1. The actual frequencies of the vibrational
modes of the molecule in vacuum are slightly shifted with respect
to those of the molecule bonded to gold, however, the difference
is so small that we neglect it in this normalization, and consider
the original frequencies of the vibrations when bonded to gold.
Figure S10 (a) shows that the vibrational damping rate Γ−vv (blue
dashed line) is always larger than the vibrational pumping rate
Γ+

vv (red solid line), and that both become smaller with increasing
laser wavelength. The vibrational pumping and damping rates in

550 600 650 700 750 800 850
0.5

1

1.5

2

2.5

3

3.5
10-20

(a)

550 600 650 700 750 800 850
0

0.5

1

1.5

2

2.5

3
10-28

(b)

Fig. S10 Optomechanical parameters for an isolated BPT molecule
in vacuum for the vibrational mode with wave-number 1066 cm−1. (a)
shows the vibrational pumping rate Γ+

vv (red solid line) and damping rate
(blue dashed line) Γ−vv as a function of laser wavelength. (b) shows the
propagation factors K+

vv (red solid line) and K−vv (blue dashed line) related
to the Stokes and anti-Stokes scattering, respectively. The laser intensity
is Ilas = 1µW/µm and other parameters are the same as in Fig. 4 in the
main text.
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vacuum are related to the Stokes and anti-Stokes scattering in the
vacuum field. In particular, we find that both optomechanical pa-
rameters are of the order of 10−20 meV in vacuum, which is about
11 to 12 orders of magnitude smaller than those when the NPoM
is present (Fig. 4(b)).

On the other hand, Fig. S10 (b) shows the propagation factors
K+

vv and K−vv of the Stokes and anti-Stokes scattering, respectively,
for the molecule in vacuum. K±vv behaves similarly as Γ±vv in this
situation. K−vv (blue dashed line) is larger than K+

vv (red solid line)
and both get smaller as the laser wavelength increases. The val-
ues of K±vv are of the order of 10−28J/s/sr, and this is enhanced by
11 orders of magnitude in the presence of the NPoM, as observed
by comparing Fig. S10 (b) with Fig. 4(c) in the main text. We do
not study the vibrational frequency shifts Ω±vv because they are in-
finite, due to the divergence of the real part of the dyadic Green’s
function. As discussed in Section 4 of the main text, this diver-
gence is not included in our calculations concerning the NPoM
nanocavity configuration.
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