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Figure S1: Photograph of the prepared sample cross section for the SECM measurement (scale 
is in cm).

Figure S2: Cyclic volatmmetry of 25 µm diameter UME tip probe. Measurement was performed 

in 1.5 mM FcMeOH and 0.2 M KNO3 mediator solution. Conditions: a scan rate of 50 mV s-1, 

potential range from 0 V to 0.5 V, starting from open circuit potential.
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Figure S3: Cyclic voltammograms of electrochemical deposition for MoS2@3D (A), WS2@3D (B), 
WS2@3D (green curve) and MoS2@WS2@3D (red curve) (C), MoS2@3D (red curve) and 
WS2@MoS2@3D (green curve) electrodes (D).

Figure S4: SEM micrograph of the thermally activated 3D-printed electrode.
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Figure S5: X-ray photoelectron spectroscopy study of the thermally activated 3D-printed 
electrode, survey spectra (A) and deconvolution of C1s (B), and Ti 2p (C).

X-ray photoelectron spectroscopy of thermally activated 3D-printed electrode surface:

The XPS survey spectrum of thermally activated 3D-printed electrodes is presented in Figure S5 

A and confirms the presence of C, O, Ti and Fe on the electrode surface. The deconvolution of 

the C 1s (Figure S5 B) spectrum confirms the presence of carbon C=C sp2 bond and other carbon 

functional groups such as C-O, C=O in the carbon-based filament. Moreover, the deconvolution 

of the Ti 2p spectrum (Figure S5 C) indicates the presence of Ti (IV) 2p1/2 and Ti (IV) 2p3/2 states 

observed at 464.5 eV and 458.7 eV, respectively, which points on the presence of TiO2 and it is in 

line with the literature1-3.
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Figure S6: X-ray photoelectron spectroscopy study of the TMD modified thermally activated 3D-
printed electrodes. Insets in the XPS survey spectrum for MoS2@3D and WS2@3D samples show 
the ratio between S and Mo (S/Mo) and S and W (S/W), respectively. 
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Figure S7: X-ray photoelectron spectroscopy study of the specific element deconvolutions for Mo 
3d, W 4f and S 2p for the MoS2@3D (A), WS2@3D (B), MoS2@WS2@3D (C) and WS2@MoS2@3D 
(D) electrodes.
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Scheme S1: Schematic energy band diagrams for MoS2 and WS2 in MoS2@WS2@3D (A) and 

WS2@MoS2@3D (B) electrodes. Band positions are estimated based on the literature4-6.

Figure S8: Tafel plots calculated from LSV measurements (A) and bar charts comparing the 
calculated Tafel slope values (B).
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Table S1: Comparison of the active catalysts supported by 3D-printed platform for hydrogen 
evolution reaction.

Catalyst Electrolyte HER overpotential 
at -10 mA cm-2 (V vs 

RHE)

Tafel slope / 
mV dec1

Ref.

Ni-modified 3D-steel  1M KOH - 0.40 131 [7]
MoS2-modified-3D-steel 1M KOH - 0.35 120 [7]

Ni-MoS2-modified-3D-steel 1M KOH - 0.30 106 [7]
NiCo2S4-spray coated 3D 0.5M H2SO4 - 0.226 38.7 [8]

ReS2@3D* 0.5 M H2SO4 - 0.28 147 [9]
MoS2 spray coated 3D 0.5 M H2SO4 - 0.55 ~ N/A** [10]

MoS3-δ@3D 0.5 M H2SO4 - 0.298 119 [11]
MoS2@3D 0.5 M H2SO4 - 0.28 220 this work
WS2@3D 0.5 M H2SO4 - 0.53 168 this work

MoS2@WS2@3D 0.5 M H2SO4 - 0.32 152 this work
WS2@MoS2@3D 0.5 M H2SO4 - 0.43 190 this work

*3D - 3D-printed electrode; ** N/A – not available
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