Electronic Supplementary Information

Construction of covalent organic framework with unique double-ring pore for size-matching adsorption of uranium

Jie Zhang, ^{ab} Lihong Zhou,*^a Zhimin Jia, ^b Xiaofeng Li, ^b Yue Qi, ^b Chuting Yang, ^c Xinghua Guo, ^b Shanyong Chen, ^b Honghan Long, ^b Lijian Ma*^b

a. College of Environment and Ecology, Chengdu University of Technology, No.1, Dongsanlu, Erxianqiao, Chengdu 610059, P. R. China. E-mail: zhoulihong2012@cdut.edu.cn.
b. College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu, 610064, P. R. China.

E-mail: ma.lj@hotmail.com; Fax: +86 28 85412907; Tel: +86 28 85412329

c. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, P. R. China.

* Corresponding Authors: ma.lj@hotmail.com (L. Ma); zhoulihong2012@cdut.edu.cn (L. Zhou).

Table of Content

1. Supporting Experimental Section		.3
2. Supporting Figures and Tables	.3	
3. Supporting References		20

Section S1. Synthesis of 1,3,5-triformylphloroglucinol (Tp)

Tp was synthesized following previously reported procedure.¹ Typically, phloroglucinol (6 g) and hexamethylenetetramine (15 g) in trifluoroacetic acid (75 mL) refluxed 2 h at 100 °C, and then added the HCl (3 M,150 mL) refluxed 1-1.5 h. The characterizations of Tp were shown in Fig. S1-S3, and it were matched well with the literature.

Fig. S1. FT-IR spectrum of Tp.

Fig. S2. ¹H NMR spectrum (CDCl₃) of Tp.

Fig. S3. ¹³C NMR spectrum (CDCl₃) of Tp.

Fig. S4 Experimental and simulated PXRD patterns of Dp-COF, and space filling

models of Dp-COF with eclipsed stacking (C, gray; N, blue; O, red; H, white).

Fig. S5 Experimental and simulated PXRD patterns of TpMa, and space filling

models of TpMa with eclipsed stacking (C, gray; N, blue; O, red; H, white).

Fig. S6 Experimental and simulated PXRD patterns of TpPa-1, and space filling models of TpPa-1 with eclipsed stacking (C, gray; N, blue; O, red; H, white).

Fig. S7 SEM mapping images of Dp-COF.

Fig. S8 SEM mapping images of TpMa.

Fig. S9 SEM mapping images of TpPa-1.

Fig. S11 N₂ adsorption-desorption isotherms of Dp-COF.

Fig. S12 N₂ adsorption–desorption isotherms of TpMa.

Fig. S13 Pore-size distribution of TpMa.

Fig. S14 Simulated pore sizes of TpMa.

Fig. S15 XRD of TpPa-1 before and after soaking in HNO₃ solutions.

Fig. S16 XRD of TpMa before and after soaking in HNO₃ solutions.

Fig. S17 XRD of Dp-COF before and after soaking in HNO₃ solutions.

Fig. S18 SEM image of TpPa-1 after soaking in 5 M HNO₃ solution.

Fig. S19 SEM image of TpMa after soaking in 5 M HNO₃ solution.

Fig. S20 SEM image of Dp-COF after soaking in 5 M HNO₃ solution.

Fig. S21 FT-IR spectra of Dp-COF and Dp-COF after 10^5 Gy γ -ray irradiation.

Fig. S22 FT-IR spectra of TpMa and TpMa after 10^5 Gy γ -ray irradiation.

Fig. S23 Fitting curve for Langmuir model of TpPa-1.

Fig. S24 Fitting curve for Freundlich model of TpPa-1.

Fig. S25 Fitting curve for Langmuir model of TpMa.

Fig. S26 Fitting curve for Freundlich model of TpMa.

Fig. S27 Fitting curve for Langmuir model of Dp-COF.

Fig. S28 Fitting curve for Freundlich model of Dp-COF.

Fig. S29 The species distribution of uranium ($c_0 = 0.5 \text{ mmol } L^{-1}$, $T = 25 ^{\circ}C$) under different pH conditions.

Fig. S30 The species distribution of plutonium ($c_0 = 8 \times 10^{-5} \text{ mmol } \text{L}^{-1}, T = 25 \degree \text{C}$)

under different pH conditions.

Table 51. Result of clemental analysis.						
Samples	C/wt %	H/wt %	N/wt %			
TpPa-1	61.80	5.52	11.50			
TpMa	59.89	4.16	11.29			
Dp-COF	61.81	3.54	10.55			
Table S2. Result of ED	S					
Samples	C/wt %	O/wt %	N/wt %			
TpPa-1	51.65	38.63	9.72			
ТрМа	52.76	37.33	9.91			
Dp-COF	48.17	38.21	13.61			

Table S1. Result of elemental analysis.

 Table S3. Compositions of the simulated nuclear industrial effluent.

Coexistent ion	Added as	Reagent purity
UO_2^{2+}	$UO_2(NO_3)_2 \cdot 6H_2O$	Standard reagent
La ³⁺	La(NO ₃) ₃ ·6H ₂ O	99.9% metal basis
Ce ³⁺	Ce(NO ₃) ₃ ·6H ₂ O	99.9% metal basis
Nd ³⁺	$Nd(NO_3)_3 \cdot 6H_2O$	AR
Sm ³⁺	Sm(NO ₃) ₃ ·6H ₂ O	AR

Gd ³⁺	$Gd(NO_3)_3 \cdot 6H_2O$	AR
Mn^{2+}	MnO	99.5%
Co ²⁺	$Co(NO_3)_2 \cdot 6H_2O$	99.9% metal basis
Ni ²⁺	Ni(NO ₃) ₂ ·6H ₂ O	Spectrum pure
Zn^{2+}	$Zn(NO_3)_2 \cdot 6H_2O$	99.9% metal basis
Ba ²⁺	Ba(NO ₃) ₂	99.9% metal basis

Table S4. Comparison of the adsorption capacities of U(VI) on Dp-COF and other reported adsorbents.

Sorbents	Experimental conditions	$q_{max}(mg/g)$	Ref
Dp-COF	T = 298 K, pH = 4.5	317	This work
COF-PDAN-AO	T = 298 K, pH = 4.0	256	2
COF-COOH	T = 298 K, pH = 4.5	211	3
COF-SO ₃ H	T = 298 K, pH = 5.0	360	4
o-GS-COF	T = 298 K, pH = 4.5	144	5
BDA-TN-AO	T = 298 K, pH = 5.0	526	6

isotherm model	parameter	value
	$q_m ({ m mg/g})$	190
Langmuir	k_L (L/mg)	0.037
	R^2	0.997
	п	2.35
Freundlich	$k_F (\mathrm{mg}^{1-(1/\mathrm{n})}\mathrm{L}^{1/\mathrm{n}}\mathrm{g}^{-1})$	19.6
	R^2	0.964

Table S5. Isotherm parameters for the uranium adsorption onto TpPa-1.

Table S6. Isotherm parameters for the uranium adsorption onto TpMa.

isotherm model	parameter	value
	$q_m (\mathrm{mg/g})$	222
Langmuir	k_L (L/mg)	0.035
	R^2	0.998
	п	2.28
Freundlich	$k_F (\mathrm{mg}^{1-(1/\mathrm{n})}\mathrm{L}^{1/\mathrm{n}}\mathrm{g}^{-1})$	20.3
	R^2	0.977

Table S7. Isotherm parameters for the uranium adsorption onto Dp-COF.					
isotherm model	parameter	value			
	$q_m ({ m mg/g})$	307			
Langmuir	k_L (L/mg)	0.301			
	R^2	0.999			
	п	4.89			
Freundlich	$k_F (\mathrm{mg}^{1-(1/\mathrm{n})}\mathrm{L}^{1/\mathrm{n}}\mathrm{g}^{-1})$	113.1			
	R^2	0.976			

Table	Table S8. Radius (r) of the cations involved in the experiments.								
ion	Gd ⁷	Sm ⁷ Mn ⁹	Ba ⁷	Ni ⁸	Co ⁸	Zn ⁸	Ce ⁷	Nd ⁷	La ⁷
r(Å)	1.34	4 1.33 0.83	1.39	0.69	0.75	0.74	1.34	1.34	1.32
Table	Table S9. The experimental and theoretical data of the specific surface area and the								
total p	total potential solvent area volume of Dp-COF and TpMa.								
	specific surface area The total potential solvent area volume								
Samr	oles	theoretical value	e experim	ental				ovnorin	ontol
Jum		$(m^2 \bullet g)$	value (n	value $(m^2 \cdot g)$ theoretic		cal value	e(Å ³)	value((Å ³)
TpN	/la	400.94	35.26		848	.09		777.35	

Dp-COF	94.97	90.18	599.31	856.38
--------	-------	-------	--------	--------

References

- 1. J. H. Chong, M. Sauer, B. O. Patrick and M. J. MacLachlan, Org. Lett., 2003, 5, 3823-3826.
- F. F. Li, W. R. Cui, W. Jiang, C. R. Zhang, R. P. Liang and J. D. Qiu, *J. Hazard. Mater.*, 2020, 392, 122333.
- 3. J. Li, X. Yang, C. Bai, Y. Tian, B. Li, S. Zhang, X. Yang, S. Ding, C. Xia, X. Tan, L. Ma and S. Li, J. Colloid Interface Sci., 2015, 437, 211-218.
- 4. X. H. Xiong, Z. W. Yu, L. L. Gong, Y. Tao, Z. Gao, L. Wang, W. H. Yin, L. X. Yang and F. Luo, *Adv. Sci.*, 2019, **6**, 1900547.
- R. Wen, Y. Li, M. Zhang, X. Guo, X. Li, X. Li, J. Han, S. Hu, W. Tan, L. Ma and S. Li, *J. Hazard. Mater.*, 2018, 358, 273-285.
- W. R. Cui, F. F. Li, R. H. Xu, C. R. Zhang, X. R. Chen, R. H. Yan, R. P. Liang and J. D. Qiu, Angew. Chem. Int. Ed., 2020, 132, 17837 – 17843.
- 7. F. David, V. Vokhmin and G. Ionova, J. Mol. Liq., 2001, 90, 45-62.
- 8. 1. R. D. Hancock and A. E. J. C. R. Martell, 1989, 89, 1875-1914.
- J. Luo, J. K. Liang, Q. L. Liu, F. S. Liu, Y. Zhang, B. J. Sun and G. H. Rao, *J. Appl. Phys.*, 2005, 97, 068106.