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S1 Derivation and discussion of Eq.S9

In this section we manipulate the ferroelectric dynamic Eqs.2 in order to derive simplified re-
lations between macroscopic quantities (e.g. average polarization and fields) and microscopic
quantities (e.g. µ2P and µ3P), that may help interpret the charge versus ferroelectric field curves
obtained by numerical simulations and observed in experiments.

To this purpose we now sum and normalize to nD the Eqs.2 for all the nD domains. We start
by discussing the domain wall energy term

∑
i

[
∑
n
(Pi−Pn)

]
= 0 (S1)

which stems from the fact that, for any domain i, the Pi appears as +4Pi in the equation for
domain i, and then as −Pi in the equations corresponding to its four adjacent domains denoted
by n in Eq.S1 and in Fig.1. This is straightforward to see for the domains that do not belong
to the borders of the device cross-section. In our simulations this is also true for the border
domains because we employ periodic boundary conditions for the domain wall coupling, such
that the domains at the left border are coupled along the x direction to the domains at the right
border and, likewise, the domains at the lower border are coupled along y to those at the top
border (see Fig.1). Eq.S1 is a very good approximation also for different boundary conditions
when the device area is fairly large, such that the border domains are a small fraction of the
overall nD domain.

We now recall the assumption γ ' 0 (used throughout this paper for simulations of HZO
based systems, see Tab.1) and come to the terms 2αiPi and 4βiP3

i in Eqs.2. Here we simplify
the derivations by neglecting the domain to domain variations of αi, βi, namely by taking for all
domains the average values α , β . The sum and normalization to nD of the term Pi readily results
in PAV , whereas the term with P3

i can be evaluated by recalling the definition ∆Pi=(Pi−PAV ),
which allows us to write
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i +3P2

AV ∆Pi +∆P3
i
)
= P3

AV +3PAV µ
2
2P +µ

3
3P (S2)

where we have used ∑
nD
i=1 ∆Pi=0 and introduced the second, µ2P, and third order Pi momentum,

µ3P, defined in Eq.3.
In order to evaluate the term involving the capacitances Ci, j we need to recall their definition.

In this respect we argue that in the MFIM structure illustrated in Fig.1 the calculation of the
ferroelectic and dielectric field is a three-dimensional problem. By invoking the superimposition
of effects of the VT and Pi, which are the sources of the electric field in the linear electrostatic
problem, we can write the potential VD(r̄) (with r̄=(x,y)) at the ferroelectric-dielectric interface
as [20]

VD(r̄) =
nD

∑
i=1

Pi GD,i(r̄)+
CF

C0
VT (S3)
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where GD,i(r̄) is the Green’s function for VD(r̄) of a unitary charge in domain i. By using Eq.S3
we can express the average VD in any domain i as

VD,i =
1
d2

∫
Di

VD(r̄)dr̄ =
nD

∑
j=1

1
Ci, j

Pj +
CF

C0
VT (S4)

which stems from the definition of the capacitances Ci, j as

1
Ci, j

=
1
d2

∫
Di

GD, j(r̄)dr̄ . (S5)

In consideration of the Neumann boundary conditions used for the electric field at the edges of
the MFIM structure, the capacitances Ci, j fulfill the sum rules [20]

nD
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j=1

1
Ci, j
'
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i=1

1
Ci, j

=
1

C0
. (S6)

By using Eqs.S4, S6 we can also express the average VD in the overall device area as

VD,AV =
1

nD
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i=1
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We are now ready to evaluate the term involving the capacitances Ci, j in the normalized sum
of Eqs.2, and we obtain

1
nD

∑
i

[
1
2

nD

∑
j=1

(
1

Ci, j
+

1
C j,i

)
Pj

]
=

1
2nD

∑
j

Pj

[
nD

∑
i

(
1

Ci, j
+

1
C j,i

)]
' PAV

CO
'VD,AV −

CF

C0
VT (S8)

where we have used again Eq.S6, as well as Eq.S7.
If we sum and normalize to nD the Eqs.2 for all nD domains and make use of Eqs.S1, S2 and

S8, we readily obtain

ρ
dPAV

dt
=−

[
2(α +6β µ

2
2P)PAV +4β (P3

AV +µ
3
3P)
]
+EF,AV (S9)

where EF,AV=(VT−VD,AV )/tF is the average value of the z component of the ferroelectric field.
If we now consider a slow transient resulting in a very small value of ρ(dPAV/dt), Eq.S9 sim-
plifies into the quasi static relation

EF,AV ' 2(α +6β µ
2
2P)PAV +4β (P3

AV +µ
3
3P) (S10)

Here it should be emphasized that Eq.S9 is not at all an alternative model to Eqs.2, in fact
µ2P, µ3P can only be obtained by solving Eqs.2. Eq.S9 and Eq.S10 are instead approximate
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relations between macroscopic quantities, such as PAV and EF,AV , and microscopic quantities,
such as µ2P and µ3P, that may help interpret the charge versus ferroelectric field characteristics.

In particular Eq.S10 can be used to interpret the slope (dQ/dEF,AV ) in the negative capaci-
tance branches observed in the charge versus EF curves. To this purpose we focus on the small
PAV range where numerical evaluations show that the third order terms in Eq.S10 are much
smaller than the other terms, and then derive both sides of Eq.S10 with respect to EF,AV to obtain

1' 2(α +6β µ
2
2P)

dPAV

dEF,AV
(S11)

where we used the simplification PAV (dµ2
2P/dEF,AV )�µ2

2P(dPAV/dEF,AV ), which is supported by
numerical evaluations for the regions of the NC branches in Figs.2, 4 where µ2P is close to its
maximum value and PAV is small. If we now write the charge as Q=PAV+εFε0EF,AV and make
use of Eq.S11 for (dPAV/dEF,AV ), we finally obtain Eq.5 in the main manuscript.
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