Supporting Information

Phosphorus Doping Induced Kinetics Modulation for Nitrogen Doped Carbon

Mesoporous Nanotubes as Superior Alkali Metal Anode Beyond Lithium for High

Energy Potassium-Ion Hybrid Capacitors

Jie Li,^a Lai Yu,^a Yapeng Li,^a Gongrui Wang,^a Liping Zhao,^a Bo Peng,^a Suyuan Zeng^b Liang Shi^{*a} and Gengiang Zhang^{*a}

^a Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

^b Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China

*To whom the correspondence should be referred. Email:gqzhangmse@ustc.edu.cn; sliang@ustc.edu.cn

Experimental Section

Synthesis of PNC-MeNTs: In a typical process, 3 mmol of MnSO₄·H₂O, 2 mmol of KMnO₄ and 2 mmol NH₄F were orderly added into 40 mL of deionized water, respectively. The solution was transferred to a 50 mL Teflon-lined autoclave and kept at 150 °C for 12 h, then allowed to naturally cooled to room temperature. The product of MnO₂ was collected by centrifugation and washed with deionized water and ethanol. Subsequently, the pyrrole (0.38 mL) and aniline (0.29 mL) monomers were dissolved in 50 mL of H₂SO₄ solution (0.1 M) and phytic acid solution (PA, 0.5 M), in which the molar ratio of PA to pyrrole and aniline is 1:1. The MnO₂ nanowires (100 mg) were dispersed into deionized water by sonication 10 minutes and then added to the pyrrole/aniline/phytic acid (Py/AN/PA) solution under stirring for 4 h at room temperature. The obtained precipitate (denoted as PPy-PANI-PA) was washed with deionized water and ethanol several times and dried at 80 °C overnight. The black precursor was calcinated in a tubular furnace at 700 °C for 2 h with a ramp of 2 °C min⁻¹ in Ar atmosphere to form the final product of P/N codoped carbon mesoporous nanotubes (denoted as PNC-MeNTs). Meanwhile, the precursor PPy-PANI-PA also calcinated at other temperatures (650 and 800 °C) under Ar atmosphere. Besides, the nitrogen-doped carbonaceous mesoporous nanotubes (denoted as NC-MeNTs) were synthesized with the similar method without the addition of PA.

Materials Characterization: The morphologies and microstructures of the synthesized materials were characterized by field-emission scanning electron microscopy (FESEM, JSM-6700F, Japan), transmission electron microscopy (TEM, JOEL, JEM-2010; Talos F200X). X-ray diffraction (XRD, TTR-III, Japan) and Raman spectrometer (Renishaw inVia) were used to collected analyze the structural

information of the obtained samples. The surface chemical state of the obtained samples was performed by X-ray photoelectron spectroscopy (XPS, ESCALAB 250). The specific surface area and pore distribution were investigated via Brunauer-Emmett-Teller (BET; Tristar II 3020M).

Electrochemical Measurement: LIR2016 coin-type cells were assembled for all electrochemical measurements. The SIBs and KIBs used pure sodium or potassium foil as the counter electrodes and assembled in an argon-filled glove, a glass microfiber filters (Whatman, GF/F) as the separator, 1.0 M NaClO₄ in EC: DEC=1:1 Vol% with 5.0% FEC and 1.0 M KFSI in EMC=100 Vol% as the electrolytes, respectively. The active materials, carbon black (Super-P) and polyvinylidene difluoride (PVDF) binder (the weight ratio 70:20:10) were mixed in N-methyl-2-pyrrolidinone (NMP) solvent. The slurry coated on copper foil and dried in a vacuum oven at 100 °C for 12 h. The mass loadings of the anode materials are 0.8-1.0 mg cm⁻². Galvanostatic charge/discharge measurements were tested on a Neware BTS-610 battery tester. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were measured by a CHI 660B electrochemical workstation.

Fabrication of Potassium ion Hybrid Capacitors: For the Potassium-ion hybrid capacitors (KIHCs), the PNC-MeNT//AC KIHCs devices were assembled employing the preactivated PNC-MeNT anode and active carbon (AC) cathode with a mass ratio ranging from 1:1 to 1:3. The AC electrode was constructed by mixing AC, Super-P and PVDF (the weight ratio 70:20:10) on aluminum foils. The PNC-MeNT anode in K-half cells was cycled for 5 cycles at 0.1 A g⁻¹ and then assembled with AC cathode in the Ar-filled glove box. The energy/power density of the PNC-MeNT//AC KIHCs was calculated based on the following equations:¹

E = P X t

(1)

$$P = V_{ave} X i /m \tag{2}$$

$$V_{ave} = \left(V_{max} + V_{min}\right)/2 \tag{3}$$

Where t is the discharge time, i is the discharge current, m is the total mass of the active materials in both anode and cathode, and V_{max} is the potential at the beginning of discharge after the IR drop, V_{min} is voltage at the end of the discharge.

1. Characterization

Figure S1. (A) The FESEM and (B) TEM images of the MnO₂ nanowires.

Figure S2. XRD patterns of MnO_2 nanowires and PPy-PANI-PA composite nanotubes.

Figure S3. XRD patterns of PNC-MeNTs and NC-MeNTs.

Figure S4. The SEM (A) and TEM (B) images of the NC-MeNTs precursor; the SEM (C) and (D) TEM images of the NC-MeNTs.

Figure S5. N₂ adsorption/desorption isotherm (A) and pore-size distribution (B) of NC-MeNTs.

Figure S6. CV curves of PNC-MeNT anode at a scan rate of 0.2 mV s⁻¹ for Na⁺ storage.

Figure S7. Cycling performance of PNC-MeNTs samples calcinated at different temperatures at a current density of 0.5 A g⁻¹ for SIBs.

Figure S8. Capacitive contribution (shaded region) at a scan rate of 0.2 mV s⁻¹ of PNC-MeNTs for SIBs.

Figure S9. The charge/discharge profiles of PNC-MeNTs at 0.1 A g⁻¹ for KIBs.

Figure S10. Long cycling performance of the PNC-MeNTs at a high current density of 2 A g^{-1} over 3000 cycles.

Figure S11. Cycling stability of PNC-MeNTs samples calcinated at different temperatures at 0.5 A g⁻¹ for KIBs.

Figure S12. ΔEs and $\Delta E\tau$ profile of PNC-MeNTs during discharge process for SIBs.

The galvanostatic intermittent titration (GITT) technique is employed to ascertain the effect on sodium/potassium ion diffusion kinetics with a pulse current at 0.05 A g⁻¹ for 30 min between rest intervals for 60 min. The diffusion coefficient (D) can be calculated from the following equation: ^{2, 3}

$$D = \frac{4}{\pi\tau} \left(\frac{m_B V_M}{M_B S} \right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau} \right)^2 \tag{4}$$

Where τ is the time duration of the current pulse; m_B is the mass loading of the active material; V_M is the molar volume of the electrode; M_B is the molar mass of electrode material; S is the area of the electrode; ΔEs is the steady-state voltage change between before and after the current pulse; $\Delta E\tau$ is the voltage change during the current pulse.

S10

Figure S13. The TEM images of PNC-MeNTs after discharged to 0.01 V at 0.01 A g^{-1} in SIBs (A) and KIBs (B).

Figure S14. The SEM (A, B) and TEM (C, D) images of PNC-MeNTs after 200 cycles at 0.1 A g^{-1} for SIBs.

Figure S15. The ex situ XRD patterns (A); The TEM images of PNC-MeNTs in different sodiation/ desodiation states at a current density of 0.1 A g^{-1} : the initial state(B), discharged to 1.5 V (C) and 0.01 V (D), charged to 1.5 V (E) and 3.0 V (F).

Figure S16. The ex situ XRD patterns (A); The TEM images of PNC-MeNTs in different potassiation/depotassiation states at a current density of 0.1 A g^{-1} : the initial state(B), discharged to 1.5 V (C) and 0.01 V (D), charged to 1.5 V (E) and 3.0 V (F).

Figure S17. (A) The SEM; (B) TEM images; (C) XRD pattern and (D) N_2 adsorption/desorption isotherm (inset: pore-size distribution) for commercial AC.

Figure S18. (A) CV curves at various scan rates and GCD curves at various current densities of AC electrode in 2.0-4.0 V (B); (C) Rate performance and (E) charge/discharge curves at different current densities of AC; (F) Cycling stability of AC at a current density of 0.1 A g^{-1} in half cell.

Figure S19. CV curves at different scan rates of the PNC-MeNT//AC KIHCs with the mass ratio of 1:1.5.

Figure S20. Ragone plot of the PNC-MeNT//AC KIHCs with mass ratios of 1:1 (A) and 1:3 (B).

Figure S21. Cycling performance of the PNC-MeNT//AC KIHCs with the mass ratio of 1:1 at 0.8 A g^{-1} .

Figure S22. Cycling stability of the PNC-MeNT//AC KIHCs with the mass ratio of 1:3 at 0.8 A g⁻¹.

Atomic content [%]	С	N	Р
PNC-MeNTs	81.39	15.03	3.58
NC-MeNTs	87.52	12.48	

Table S1. Elemental analysis of PNC-MeNTs and NC-MeNTs.

Materials	Rate capability (mAh g ⁻¹)	Cyclability (mAh g ⁻¹)	Reference	
	269 at 0.2 A g^{-1}			
P-CNSs	208 at 1 A g ⁻¹	196.9/1000 cycle/1 A g ⁻¹		
	169 at 2 A g ⁻¹	108.8/5000 cycle/5 A g ⁻¹	Ref 4	
	143 at 5 A g ⁻¹			
	117 at 10 A g ⁻¹			
	233 at 0.1 A g ⁻¹			
N, P-doped carbon sheets	204 at 0.2 A g ⁻¹	$202/200 \text{ cycle} / 0.2 \text{ A} \text{ g}^{-1}$	Ref 5	
	177 at 0.5 A g $^{\text{-}1}$	202/200 Cycle/0.2 A g 103/2000 cycle/1 A g ⁻¹		
	143 at 1 A g ⁻¹	103/2000 Cycle/1 A g		
	122 at 2 A g ⁻¹			
	290 at 0.2 A g ⁻¹			
	253 at 0.5 A g ⁻¹			
	200 at 1 A g ⁻¹	99 8/10 000 cycle/5 A g ⁻¹	Pof 6	
SD PCPS	166 at 2 A g ⁻¹	55.6710 000 Cyclc/5 A g	Reib	
	130 at 5 A g ⁻¹			
	104 at 10 A g ⁻¹			
	232.2 at 0.02 A g ⁻¹	$129.7/2500 \text{ cyclo}/0.9 \text{ A g}^{-1}$	Def 7	
SC-INS	103. <u>8</u> at 1 A g ⁻¹	120.7/3300 Cycle/0.0 A g -	Kel 7	
	278 at 0.1 A g ⁻¹	17E/1000 avala /0 E A1		
3DFC-700	227 at 0.2 A g ⁻¹	$1/5/1000 \text{ cycle}/0.5 \text{ A g}^{-1}$	Ref 8	
	199 at 0.5 A g ⁻¹	33/ 10 000 CYCIE/ 10 A g 1		

Table S2. Comparison of the electrochemical performances of reported carbon-based carbonmaterials for SIBs.

	174.1 at 2 A g ⁻¹		
	192.5 at 1 A g ⁻¹	94.7/10 000 cycle/10 A g ⁻¹	
PNC-MeNTs	216.2 at 0.5 A g ⁻¹	214.1/1000 cycle/1 A g ⁻¹	This work
	239.0 at 0.2 A g ⁻¹	256.2/200 cycle/0.1 A g ⁻¹	
	283.5 at 0.1 A g ⁻¹		
	138.3 at 1 A g ⁻¹		
nom sweet gum	169.6 at 0.5 A g ⁻¹		
carbon derived	237.4 at 0.2 A g ⁻¹	136.1/1000 cycle/1 A g ⁻¹	Ref 12
	281.7 at 0.1 A g ⁻¹		
	339.1 at 0.05 A g ⁻¹		
	78 at 1.2 A g ⁻¹		
	121 at 0.6 A g ⁻¹		
IF-WIF J.Z 1000	174 at 0.3 A g ⁻¹	131/130 CYCIC/0.13 A g	NEL TT
ED-WD 5·2 1000	227 at 0.15 A g ⁻¹	191/150 cycle/0 15 Δ σ ⁻¹	Ref 11
	259 at 0.06 A g ⁻¹		
	281 at 0.03 A g ⁻¹		
	70 at 5 A g ⁻¹		
rt3	91 at 2 A g ⁻¹		
	116 at 1 A g ⁻¹	210/200 0700/011/18	Ref 10
PCS	151 at 0.5 A g ⁻¹	240/200 cycle/0.1 A g ⁻¹	
	204 at 0.2 A g ⁻¹		
	317 at 0.1 A g ⁻¹		
	64 at 10 A g ⁻¹		
	93 at 5 A g ⁻¹		
	116 at 2 A g ⁻¹		
huCP/g-C ₃ N ₄	134 at 1 A g ⁻¹	110/4000 cycle/1 A g ⁻¹	Ref 9
	162 at 0.5 A g ⁻¹		
	231 at 0.2 A g ⁻¹		
	264 at 0.1 A g ⁻¹		
	127 at 10 A g ⁻¹		
	176 at 2 A g-1		

Table S3. Comparison of the electrochemical performances of reported carbon-based carbonmaterials for KIBs.

Materials	Rate capability (mAh g ⁻¹)	Cyclability (mAh g ⁻¹)	Reference
	286.1 at 0.05 A g ⁻¹		
	255.1 at 0.1 A g ⁻¹		
OMC	218.8 at 0.2 A g ⁻¹	146.5/1000 cycle/1 A g ⁻¹	Ref 13
	186.3 at 0.5 A g ⁻¹		
	144.2 at 1 A g ⁻¹		
	320 at 0.05 A g ⁻¹		Ref 14
	235 at 0.1 A g ⁻¹	200/400 and 20.1 A -1	
S/N@C	160.2 at 0.5 A g ⁻¹	200/400 Cycle/0.1 A g ⁻	
	123.5 at 1 A g ⁻¹	65/900 Cycle/1 A g 1	
	91.2 at 2 A g ⁻¹		
	388 at 0.05 A g ⁻¹		
	319 at 0.1 A g ⁻¹		
	286 at 0.2 A g ⁻¹	152/2000 avala /1 A g-1	
PINCIM	253 at 0.5 A g ⁻¹	152/5000 Cycle/1 A g -	Ket 15
	225 at 1 A g ⁻¹		
	199 at 2 A g ⁻¹		
	247 at 0.1 A g ⁻¹		
	185 at 0.2 A g ⁻¹		
SC-NS	162 at 0.5 A g ⁻¹	117.2/3000 cycle/1 A g ⁻¹	Ref 16
	146 at 1 A g ⁻¹		
	130 at 2 A g ⁻¹		
	340 at 28 mA g ⁻¹	250/150 cycle/0.14 A g ⁻¹	
3DFC-700	FC-700 301 at 56 mA g ⁻¹	~153/500 cycle/0.28 A g ⁻¹	Ret 17

	146.1 at 1 A g ⁻¹ 106.9 at 2 A g ⁻¹	125.5/3000 cycle/2 A g ⁻¹	
PNC-MeNTs	169.6 at 0.5 A g ⁻¹	188.7/3000 cycle/1 A g ⁻¹	This work
	258.6 at 0.1 A g ⁻¹ 206.6 at 0.2 A g ⁻¹	210.2/150 cycle/0.1 A g ⁻¹	
NOGCN	114 at 1 A g ⁻¹	131/300 cycle/0.5 A g ⁻¹	Ref 21
	476 at 0.05 A g ⁻¹		
	141 at 2 A g ⁻¹		
	162 at 1 A g ⁻¹	, , , , , , , , , , , , , , , , , , , ,	
N-HCNs	182 at 0.5 A g ⁻¹	154/2500 cvcle/1 A g ⁻¹	Ref 20
	210 at 0.2 A g^{-1}	201/100 cvcle/0.1 A g ⁻¹	
	252 at 0.1 Δ σ ⁻¹		
	$226 \text{ at } 0.05 \text{ A } \text{g}^{-1}$		
	$106 \text{ at } 2 \text{ A g}^{-1}$		
	140 at 0.5 A g	111/1000 Cycle/2 A g	
OLC	$107 \text{ at } 0.2 \text{ Ag}^{-1}$	$111/1000 \text{ cycle}/2.5 \text{ Ag}^{-1}$	Ref 19
	194 at 0.1 A g $^{-1}$	151/1000 cyclo/0 5 A g ⁻¹	
	245 at 0.05 A g^{-1}		
	110 at 1 A g ⁻¹		
	178 at 0.5 A g ⁻¹	80/3000 Cycle/2 A g -	Ref 18
MCOs	223 at 0.2 A g ⁻¹	$100/1300 \text{ cycle}/1 \text{ A g}^{-1}$	
	317 at 0.1 A g ⁻¹	400/4000	
	354 at 0.05 A g ⁻¹		
	117 at 560 mA g ⁻¹		
	204 at 280 mA g ⁻¹		
	253 at 140 mA g ⁻¹		

Table S4. (Comparison	of the e	lectrochemical	performances	of the	PNC-MeNT//AC	KIHCs wit	h recent
literatures a	about potassii	um ion hy	ybrid capacitors	5.				

Materials	Voltage window (V)	Energy density (Wh kg ⁻¹) /Power density (W kg ⁻¹)	Cycling life	Reference
NHCS//ANHCS	0.01.4.0	114.2/100.5	93%/2000/0.5 A g ⁻¹	D-f 22
PIHC	0.01-4.0	19.1/8203	80.4%/5000/2 A g ⁻¹	Rel 22
CTP@C//AC		80/32		
KIC	1.0-4.0	34/5144	75.9%/4000/5 A g⁻¹	Ref 23
//		20/214		
PB//AC	0-1.9	28/214	98%/1200/2 A g ⁻¹	Ref 24
KIC		10.5/1890		
KTO//NGC	0.05	58.2/160		
KIC	0-3.5	11.8/7200	/5.5%/5000/1 A g⁻¹	Ref 25
graphite//AC		12/22		
KIC	0.5–3.5	11/1500	97%/55000	Ref 26
Ric		11/1500		
Co₂P@rGO//AC	1.0-4.0	87/12	68%/1000/1 A g ⁻¹	Ref 27
KIC		10/4264.7	, , , ,	Net 27
FeSe ₂ /AC		230/198		
PIHC	0.1-3.8	30/920	/	Ref 28
		50/1150 2		
CFMS//CFMS	0.01-3.8	58/1158.2	90%/10 000/2 A g ⁻¹	Ref 29
PDIC		39/7800	· · · · -	
NCNTs//AC	0.01.4	117.1/112.8	04 60/ /2000 /4 11	- (
KIHC	0.01-4	25.7/1713.4	81.6%/2000/1 A g ⁻¹	Ref 30
56//46		120/96		
SC//AC	0-4	12 2/500	97.5%/1500/0.75 A g ⁻¹	Ref 31
KIHC		13.3/599		
N,P-doped C//ADPC	1-4.2	72/257	75.6%/2000/1 A g ⁻¹	Ref 32

PNC-MeNT//AC KIHC	0.05-4.0	175.1@160.6 31.6@3034	85.8%/3000/0.8 A g ⁻¹	This work
КІНС	0.01-4.0	76/5136	80.4%/ 5000/ 1 A g -	Ref 35
S-N-PCNs//AC	0.01.4.0	187/99	86.4%/2000/1.4 c -1	- (
HC//AC KIHC	1.5-4.2	77/2830 4.5/5000	84%/50/0.4 A g ⁻¹	Ref 34
NPG//AC KIHC	1-4	104.4/760.6 41.6/14976	~65%/1000/1 A g ⁻¹	Ref 33
KIHC		18.5/5220		

Reference:

- 1. J. Chen, B. Yang, H. Hou, H. Li, L. Liu, L. Zhang and X. Yan, *Adv. Energy Mater.*, 2019, **9**, 1803894.
- 2. H. He, D. Huang, Y. Tang, Q. Wang, X. Ji, H. Wang and Z. Guo, *Nano Energy*, 2019, **57**, 728-736.
- Y. Wang, D. Zhang, Y. Wang, Y. Zhang, X. Liu, W. Zhou, J.-K. Kim and Y. Luo, *Nanoscale*, 2019, 11, 11025-11032.
- 4. H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen and X. Ji, *Adv. Sci.*, 2017, **4**, 1600243.
- 5. D. Qin, Z. Liu, Y. Zhao, G. Xu, F. Zhang and X. Zhang, *Carbon*, 2018, **130**, 664-671.
- 6. H. Hou, C. E. Banks, M. Jing, Y. Zhang and X. Ji, Adv. Mater., 2015, 27, 7861-7866.
- X. Yao, Y. Ke, W. Ren, X. Wang, F. Xiong, W. Yang, M. Qin, Q. Li and L. Mai, *Adv. Energy Mater.*, 2018, 9, 1803260.
- 8. B. Yang, J. Chen, S. Lei, R. Guo, H. Li, S. Shi and X. Yan, *Adv. Energy Mater.*, 2018, **8**, 1702409.
- 9. H. Tao, L. Xiong, S. Du, Y. Zhang, X. Yang and L. Zhang, *Carbon*, 2017, **122**, 54-63.
- 10. F. Sun, K. Wang, L. Wang, T. Pei, J. Gao, G. Zhao and Y. Lu, *Carbon*, 2019, **155**, 166-175.
- 11. F. Xie, Z. Xu, A. C. S. Jensen, H. Au, Y. Lu, V. Araullo-Peters, A. J. Drew, Y. S. Hu and M. M. Titirici, *Adv. Funct. Mater.*, 2019, **29**, 1901072.
- 12. K. Wang, Y. Xu, Y. Li, V. Dravid, J. Wu and Y. Huang, J. Mater. Chem. A, 2019, 7, 3327-3335.
- 13. W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang and S. Guo, *Adv. Energy Mater.*, 2018, **8**, 1701648.
- A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu, Z. Liang, W. Meng, W. Aftab, W. Guo, H. Zhang, M. Yousaf, S. Gao, R. Zou and Y. Zhao, *Adv. Mater.*, 2019, **31**, 1805430.
- 15. Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan, N. Xu, X. Shen and C. Yan, *Adv. Mater.*, 2017, **29**, 1702268.
- 16. J. Qin, H. M. Kheimeh Sari, C. He and X. Li, J. Mater. Chem. A, 2019, 7, 3673-3681.
- D. S. Bin, X. J. Lin, Y. G. Sun, Y. S. Xu, K. Zhang, A. M. Cao and L. J. Wan, *J. Am. Chem. Soc.*, 2018, 140, 7127-7134.
- 18. G. Xia, C. Wang, P. Jiang, J. Lu, J. Diao and Q. Chen, J. Mater. Chem. A, 2019, 7, 12317-12324.
- 19. J. Chen, B. Yang, H. Li, P. Ma, J. Lang and X. Yan, J. Mater. Chem. A, 2019, 7, 9247-9252.
- J. Ruan, X. Wu, Y. Wang, S. Zheng, D. Sun, Y. Song and M. Chen, J. Mater. Chem. A, 2019, 7, 19305-19315.

- 21. Y. Sun, D. Zhu, Z. Liang, Y. Zhao, W. Tian, X. Ren, J. Wang, X. Li, Y. Gao, W. Wen, Y. Huang, X. Li and R. Tai, *Carbon*, 2020, **167**, 685-695.
- 22. D. Qiu, J. Guan, M. Li, C. Kang, J. Wei, Y. Li, Z. Xie, F. Wang and R. Yang, *Adv. Funct. Mater.*, 2019, **29**, 1903496.
- 23. Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang, C. Wang, Y. Zeng, B. Zou, G. Chen and F. Du, *Adv. Funct. Mater.*, 2018, **28**, 1802684.
- L. Zhou, M. Zhang, Y. Wang, Y. Zhu, L. Fu, X. Liu, Y. Wu and W. Huang, *Electrochim. Acta*, 2017, 232, 106-113.
- 25. S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji and X. Zhang, ACS Appl. Mater. Interfaces, 2018, **10**, 15542-15547.
- 26. A. Le Comte, Y. Reynier, C. Vincens, C. Leys and P. Azaïs, J. Power Sources, 2017, 363, 34-43.
- Y. Wang, Z. Zhang, G. Wang, X. Yang, Y. Sui, F. Du and B. Zou, *Nanoscale Horiz.*, 2019, 4, 1394-1401.
- 28. J. Ge, B. Wang, J. Wang, Q. Zhang and B. Lu, Adv. Energy Mater., 2019, 9, 1903277.
- 29. Y. Feng, S. Chen, J. Wang and B. Lu, J. Energy Chem., 2020, 43, 129-138.
- X. Li, M. Chen, L. Wang, H. Xu, J. Zhong, M. Zhang, Y. Wang, Q. Zhang, L. Mei, T. Wang, J. Zhu,
 B. Lu and X. Duan, *Nanoscale Horiz.*, 2020, DOI: 10.1039/d0nh00451k.
- 31. L. Fan, K. Lin, J. Wang, R. Ma and B. Lu, Adv. Mater., 2018, 30, 1800804.
- X. Yu, M. Shao, X. Yang, C. Li, T. Li, D. Li, R. Wang and L. Yin, *Chin. Chem. Lett.*, 2020, **31**, 2215-2218.
- Y. Luan, R. Hu, Y. Fang, K. Zhu, K. Cheng, J. Yan, K. Ye, G. Wang and D. Cao, *Nano-Micro Lett.*, 2019, **11**, 30.
- 34. F. Wang, X. Wang, Z. Chang, X. Wu, X. Liu, L. Fu, Y. Zhu, Y. Wu and W. Huang, *Adv. Mater.*, 2015, **27**, 6962-6968.
- 35. X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan and Z. Wen, Adv. Energy Mater., 2019, 9, 1901533.