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I. ATOMISTIC MODEL AND DENSITY-FUNCTIONAL THEORY CALCULATIONS

We used density-functional theory (DFT) with projector-augmented-wave (PAW) potentials,1 as implemented in
VASP,2 first to determine the equilibrium structure of CdSe nanoplatelets passivated by carboxylate ligands and
then to obtain the wavefunctions ψ(r) for the electron and hole quantum-confined states discussed in the main text.
The structural calculations were performed within the generalized-gradient approximation of Perdew, Burke, and
Ernzerhof (PBE) to DFT,3 while the wavefunctions were computed using the hybrid screened-exchange functional
of Heyd, Scuseria, and Ernzerhof (HSE).4 For the HSE calculations we used a fraction α = 0.30 of Hartree-Fock
exchange to accurately reproduce the bulk band gap of zinc-blende CdSe at room temperature.

CdSe nanoplatelets grown from colloidal solution have the zinc-blende crystal structure and exhibit Cd-terminated
outer layers [5] and hence we assumed these findings in all our calculations. Since the surface Cd atoms carry a
positive charge, it is natural to expect the ligands to bind to these Cd atoms as carboxylate anions. We confirmed
this expectation using DFT total energy calculations. We tested several different possible coordinating geometries of
the ligand at the nanoplatelet surface. The most stable is the one shown in Fig. 2 of the main text, a mixed bridging-
chelating coordination in which the two oxygen atoms of the carboxylate head group form bonds to two surface Cd
atoms. Full structural relaxation was performed on the ligand molecules, which we assumed to have 1× 1 periodicity
(one ligand per surface Cd atom) on both sides of the CdSe nanoplatelet. For simplicity, the platelet itself was kept
in its ideal structure because the atomic relaxations from this idealized geometry were found to be negligible. The
relaxations were performed in a repeated slab geometry with a vacuum region of 20 Å. The Brillouin-zone sampling
was 2× 2× 1.

The electron and hole quantum-confined wavefunctions ψ(r) were computed at the Brillouin-zone center using
HSE and identified by examining their spatial envelope structure (which for the lowest-lying confined states must be
nodeless) and atomic orbital composition (Se(p) for hole states and mixed Cd(s) plus Se(p) for electron states). For
our purposes, the wavefunction tails must be represented very accurately. Plane-wave basis sets with standard cutoff
energies fail to do this. To ensure the wavefunctions are fully converged, we doubled the default energy cutoff to 800
eV.

The electron and hole quantum-confined wavefunctions ψ(r) were computed at the Brillouin-zone center using HSE
and identified by examining their spatial envelope structure and atomic orbital composition. For our purposes, the
wavefunction tails must be represented very accurately. Plane-wave basis sets with standard cutoff energies fail to do
this. To ensure the wavefunctions are fully converged, we doubled the default energy cutoff to 800 eV.

II. SQUARE-WELL MODEL AND EFFECTIVE-MASS THEORY

A major step in our work was to use a one-dimensional stepped-square-well model and effective-mass theory to
reproduce the DFT/HSE wavefunctions as accurately as possible. In this section we describe the details of this
procedure. We begin with a brief overview and then give technical details in the following subsections.

The full DFT/HSE wavefunctions ψ(r) are functions of r = (x, y, z) and so we first performed a planar averaging
parallel to the surface plane to define a real-valued one-dimensional wavefunction,

ψ(x) =

[∫
|ψ(x, y, z)|2dy dz

]1/2
, (1)

one example of which is shown in Fig. 3(a) of the main text. We then constructed the stepped-square-well potential
shown in that figure and solved for its lowest-lying bound state numerically using the transfer-matrix approach
described in Sec. II A below. Specifically, we fixed the physical dimensions a and L of the square well and then used
effective-mass theory (EMT) to obtain the wavefunctions φUV (x), which depend on the square-well barriers U and V .
Finally, we performed a two-dimensional numerical optimization with respect to U and V of the objective function

E =

∫
|lnψ(x)− lnφUV (x)|2dx (2)

to obtain the optimal barrier heights U0,V0 and the corresponding optimal wavefunction φ(x) = φU0V0
(x) discussed

and shown in Fig. 3(a) of the main text.

A. Wavefunctions of a stepped square well

We determined the bound-state wavefunctions for the stepped square well using a transfer-matrix approach de-
veloped for one-dimensional heterostructure profiles.5 We take the potential Wj to be constant in each region
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j = 0, 1, . . . , N . The wavefunction in region j has the form

φj(x) = Aje
−αj(x−xj) +Bje

αj(x−xj), (3)

where the wavenumber is αj = [2mj(Wj − E)]1/2/h̄, E is the eigenenergy, and mj is the effective mass. We consider
only bound states E < Wj . We apply conventional boundary conditions by matching the wavefunctions φj(x) and
derivatives ∂φj(x)/mj∂x at the boundaries. This leads to a coupled recursion relation for the coefficients Aj and Bj :

Aj +Bj = Aj+1e
−αj+1(xj−xj+1) +Bj+1e

αj+1(xj−xj+1)

αj
mj

(Aj −Bj) =
αj+1

mj+1
[Aj+1e

−αj+1(xj−xj+1) −Bj+1e
αj+1(xj−xj+1)].

(4)

This can be written more compactly as [
Aj+1

Bj+1

]
= Fj+1,j

[
Aj
Bj

]
, (5)

where the transfer matrix is

Fj+1,j =
1

2

[
(1 + Pj+1,j)e

−αj+1δxj (1− Pj+1,j)e
−αj+1δxj

(1− Pj+1,j)e
αj+1δxj (1 + Pj+1,j)e

αj+1δxj

]
. (6)

For convenience we have defined

Pj+1,j =
mjαj+1

mj+1αj
(7)

and we denote the thickness of region j + 1 by δxj = xj+1 − xj .
To apply the method, we take the leftmost region to be j = 0. To ensure the wavefunction is bounded, we

must have A0 = 0. Similarly, the wavefunction in the rightmost region must have BN+1 = 0. The matrix product
f = FN+1,NFN,N−1 · · · F0 connects the coefficients:[

AN+1

0

]
=

[
f11 f12
f21 f22

] [
0
B0

]
, (8)

In order for this equation to be satisfied, we must have f22(E) = 0. The smallest E satisfying this equation is the
energy of the ground state.

We now apply this technique to our problem, the symmetric stepped square well. There are three regions: the
semi-infinite vacuum with potential V , the ligand region with width L and potential U , and the quantum-well region
with width a and potential zero. This leads to

f22(E) = cosh2(αligL)
[
2 cos(ka) +

J2 − 1

J
sin(ka)

]
+ sinh2(αligL)

[
2 cos(ka) +

K2 − 1

K
sin(ka)

]
+ sinh(2αligL)

[M2 + 1

M
cos(ka) +

N2 − 1

N
sin(ka)

]
,

(9)

where we have defined

J =
mQWαvac

mvack
, K =

α2
lig

m2
lig

mvacmQW

αvack
, M =

mligαvac

mvacαlig
, N =

mQWαlig

mligk
(10)

and the wavenumbers in the three regions are given by k = (2mQWE)1/2/h̄, αlig = [2mlig(U − E)]1/2/h̄, αvac =

[2mvac(V − E)]1/2/h̄. There are four nonzero wavefunction coefficients: Bvac, Alig, Blig, BQW. By applying the
boundary conditions, we obtain three relationships among them:

Alig =
Bvac(mvacαlig −mligαvac)

2mvacαlig
e−(αvac+αlig)(a/2+L),

Blig =
Bvac(mvacαlig +mligαvac)

2mvacαlig
e−(αvac−αlig)(a/2+L),

BQW =
(Blig −Alige

αliga)mQWαlig

mligk
e−(αliga)/2 csc(ka/2).

(11)
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Requiring the wavefunction to be normalized provides the fourth relationship, and hence the full wavefunction for the
stepped square well.

It is worthwhile to check that without the ligand region, our result reduces to the standard solution for a simple
(i.e. non-stepped) square well. To see this, we first set L = 0 to obtain

f22(E) = 2 cos(ka) +
J2 − 1

J
sin(ka) = 0. (12)

Using the trigonometric identity tan(ka) = 2 tan(ka/2)/[1− tan2(ka/2)] we then obtain

J = tan(ka/2), (13)

which gives the standard equation for the energy level in a simple quantum well:

αvac = k(mvac/mQW) tan(ka/2). (14)

Finally, it is easy to confirm that the limit V →∞ leads to the standard result for the lowest bound-state energy of
the infinite potential well,

E0 =
h̄2π2

2mQWa2
. (15)

B. Effective masses of CdSe and ligands

The effective masses mQW (for the CdSe quantum well) and mlig (for the ligand region) are central parameters
in the effective-mass-theory solution of the square-well wavefunctions. We used CdSe effective masses obtained from
the multiband effective-mass approximation proposed by Pidgeon and Brown6 and applied recently to zinc-blende
CdSe nanoplatelets, 0.893me (for holes) and 0.183me (for electrons), where me is the electron rest mass.7 This model
correctly describes the non-parabolic behavior of the hole and the electron-band dispersions near the Brillouin-zone
center. We used the mass for heavy holes because they determine the energy levels in the CdSe quantum-well region.

We used DFT to calculate a single effective mass for the ligand region by considering a fictitious “alkane solid”
consisting of parallel infinite saturated hydrocarbon chains having a lattice spacing given by the surface lattice constant
of CdSe(001). We took the effective mass of the light holes because they determine the asymptotic behavior of the
wavefunction φ(x) in the ligand region. The value obtained, 0.287me, is in excellent agreement with the value reported
earlier for alkane chains.8 The corresponding effective mass for electrons is 1.784me.

We must also take into account the effect of the ligand packing density which can, in principle, vary according
to the colloidal synthesis, growth temperature, or the use of multiple ligands. At the maximum possible density of
one ligand per surface Cd atom, the ligands are separated by 4 Å and interact very little. Hence it is reasonable to
spatially average the computed effective masses according to how much of this volume is vacuum-like compared to
ligand-like. We explored several ad-hoc definitions for this partitioning and found a reasonable value of fvac = 0.68
for the fraction of vacuum-like volume. In this way we arrived at final values for the effective masses of 0.768me and
1.255me for light-holes and electrons, respectively.

III. WAVEFUNCTION OVERLAP

A. DFT overlap integrals for electron states

The theoretical values shown in Fig. 4 of the main text of the overlap integral are for hole states. Figure S1 on the
following page shows the corresponding values for electron states and the numerically determined decay length L0.

B. Derivation of analytic expression for the overlap integral

The wavefunction φ(x) for the stepped square well has the form shown in Eq. 3 with coefficients given by Eq.
11. In the ligand region, this wavefunction is a sum of two exponentials, but their coefficients differ by about six
orders of magnitude, Alig � Blig. Hence, it is an excellent approximation to regard φ(x) as consisting of cos(kx)
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FIG. S1: Overlap integrals from density-functional-theory (DFT) and effective-mass theory (EMT) of the quantum-confined
electron-state wave functions for CdSe nanoplatelets as a function of the number of carbon atoms in the ligand molecules.
The results for 4-ML platelets obtained from DFT (magenta) and EMT (orange) are in extremely good agreement; the EMT
values are offset by one decade for clarity. The exponential decay lengths L0 are 1.16 Å for DFT and 1.21 Å for EMT. The
experimental results (Refs. 9, 10,11) are identical to those in Fig. 4 of the main text.

in the nanoplatelet region and single exponentials exp(−αlig|x|) and exp(−αvac|x|) in the ligand and vacuum region,
respectively.

We now consider the overlap integral of the normalized wavefunction φ(x),

S(D) =

∫
φ(x)φ(x−D)dx (16)

for the case D = a+ 2L+ g considered in the main text and for simplicity set g = 0. This integral can be performed
analytically to give

(17)

S(D) =
[
2αlig cos (ak/2) e−aαvac−2L(2αlig+αvac) ×[

cos (ak/2)
(
−2αvac(αlig + αvac)

(
α2
vac + k2

)
eaαvac+2L(αlig+αvac)

+ 2αvac(αlig + αvac)
(
αligαvac + k2

)
eαvac(a+L)+3αligL

+ (αlig − αvac)
2
(
α2
vac + k2

)
e2αligL − 2αvac(αlig − αvac)

(
αligαvac − k2

)
eL(3αlig+αvac)

)
+ 2αvack (eaαvac + 1) (αlig − αvac)(αlig + αvac) sin (ak/2) eL(3αlig+αvac)

]]
/

[
αvac(αlig − αvac)(αlig + αvac)

(
α2
vac + k2

)
×(

aαlig +
αlig sin(ak)

k
+

(αlig − αvac)e
−2αligL(cos(ak) + 1)

αvac
+ cos(ak) + 1

)]
.

Evaluating this expression using realistic parameters and then dropping numerically negligible terms (those at least
three orders of magnitude smaller than other terms) leads to

(18)S(D) =
2αlig cos

(
ak
2

)
e−aαvac−2L(2αlig+αvac)

(
cos
(
ak
2

) (
−2αvac(αlig + αvac)

(
α2
vac + k2

)
eaαvac+2L(αlig+αvac)

))
αvac(αlig − αvac)(αlig + αvac) (α2

vac + k2)
(
aαlig +

αlig sin(ak)
k + cos(ak) + 1

)
which can be rearranged to

(19)S(D) = exp(−L/L0)ξ(a),
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where L0 = 1/2αlig and we have defined a function that expresses the size dependence,

(20)ξ(a) =
2αligk(cos(ak) + 1)

(αvac − αlig)(aαligk + αlig sin(ak) + k cos(ak) + k)
,

which is independent of L as stated in the main text. For small a we can write a first-order approximation for this,

ξ(a) ≈ Avl
a+ 2L0

(21)

where Avl = 2/(αvac − αlig), as stated in the text.

IV. ANALYTIC BEHAVIOR OF THE DECAY LENGTH

In the previous section, we showed that the decay length describing the exponential dependence of the overlap
integral on the ligand length is given by L0 = 1/2αlig, where αlig is the exponent in the wavefunction in the ligand
region. In this section, we obtain an expression for αlig that shows why the decay length is primarily determined by
the properties of the ligand region and depends only weakly on the nanocrystal size.

It is easy to demonstrate numerically that αlig for the stepped square well is almost independent of the width L of
the ligand region. Hence, we consider the limit L→∞, which is equivalent considering a single (non-stepped) square
well.

The standard textbook solution of the single square well is based on effective-mass theory. There are two boundary
conditions, ensuring continuity of the wavefunction and its flux. The ratio of the two resulting equations gives the
standard square-well equation which we cast in the form of a function,

f(E) = mQW αlig −mlig k tan ka/2, (22)

whose zeroes are the energies of the bound states. Here, mQW and mlig are the effective masses in the quantum well

and the ligand region, respectively, αlig = [2mlig(U − E)]1/2/h̄ describes the exponential wavefunction in the ligand

region, and k = (2mQWE)1/2/h̄ describes the cosine wavefunction in the quantum well. The function f(E) has a

singularity at E = h̄2π2/2mQWa
2 corresponding to the infinite square well but in our case the zeroes are far from

this singularity. Thus we can make a Taylor expansion with respect to E,

(23)f(E) ≈
mQW

√
2mligU

h̄
−
mQW(2amlig

√
U + h̄

√
2mlig)

2
√
Uh̄2

E −
4a3mligm

2
QWU

3/2 + 3mQWh̄
3√2mlig

24U3/2h̄4
E2,

and use the terms up to 1st order to define a linear approximation to f(E). The zeroes of this linear approximation
overestimate the exact energies by 10-20% but since the energy is generally small compared to U this error does not
significantly affect αlig. Using this linear approximation for E we obtain, after some algebra, the expression for the
decay length given in the main text,

L0 = 1/2αlig = L0

[
1− 2

1 + (U/U0)1/2

]−1/2

, (24)

where

L0 =
1

2

h̄

(2mligU)1/2
(25)

is the decay length in the limit of large U and a and we have defined a characteristic energy scale,

U0 =
h̄2

2mliga2
. (26)

It is evident from these expressions that the nanocrystal size a affects the decay length L0 only through the term U0,
which is of order a few 10s of meV. This is much smaller than the barrier U , which is of order 1-2 eV. Hence we can
write a Taylor expansion of Eq. 24 with respect to 1/a,

L0 ≈ L0[1 + 2L0/a+ 2L2
0/a

2]. (27)

Since L0 is of order 1 Å, it is obvious from Eq. 27 that the size dependence of L0 is very weak.
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V. GEOMETRICAL EFFECT OF NANOCRYSTAL SIZE

We model the decay of a wavefunction from the surface of a sphere with radius R into the vacuum using the simple
function fR(r) = exp (−r/L1) for r > R (outside the sphere) and unity inside. Our DFT calculations show that the
decay length L1 is of order 1 Å for decay into vacuum.

Consider now the integral F (R) =
∫
fR(r)fR(r−D)d3r where, for simplicity, we set the center-to-center separation

D such that the spheres are just touching. This integral can be performed analytically but has an extremely compli-
cated form. More illuminating are the two numerical results in Fig. S2 below, which show the dependence of F (R)
on R for fixed L1 = 1.5 Å, and on L1 for fixed R = 50 Å. It is obvious from these results that F (R) ∝ RL2

1 to within
reasonable accuracy, as written in the main text.
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FIG. S2: (left) Linear dependence of F (R) on sphere radius R. (right) Quadratic dependence of F (R) on decay length L1.

1 P. E. Blöchl, Physical Review B 50, 17953 (1994).
2 G. Kresse and J. Furthmüller, Physical Review B 6, 15 (1996).
3 J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).
4 J. Heyd, G. E. Scuseria, and M. Ernzerhof, The Journal of Chemical Physics 118, 8207 (2003).
5 S. L. Chuang, Physics of Photonic Devices (John Wiley and Sons, Inc., New Jersey, 2nd Edition, 2009).
6 C. R. Pidgeon and R. N. Brown, Physical Review 146, 575 (1966).
7 S. Ithurria, M. D. Tessier, B. Mahler, R. P. Lobo, B. Dubertret, and A. L. Efros, Nature Materials 10, 936 (2011).
8 J. K. Tomfohr and O. F. Sankey, Physical Review B 65, 1 (2002).
9 W. P. Wuelfing, S. J. Green, J. J. Pietron, D. E. Cliffel, and R. W. Murray, Journal of the American Chemical Society 122,

11465 (2000).
10 Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H. W. Hillhouse, and M. Law, Nano Letters 10, 1960 (2010).
11 M. S. Khoshkhoo, J. F. L. Lox, A. Koitzsch, H. Lesny, Y. Joseph, V. Lesnyak, and A. Eychmüller, ACS Applied Electronic

Materials 1, 1560 (2019).


