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S1. Characterizations 

The surface morphology of the as prepared (1D Co3O4@CNF hybrid, CNF and Co3O4) was 

analyzed using field emission scanning electron microscopy (FESEM; (JEOL JSM-6700F )) 

and transmission electron microscopy (TEM; (FEI Tecnai F30 S-TWIN TEM)). To TEM, 

sample were prepared by means of adding few drops of ethanol with samples and ultrasonically 

sonicated for about 1 min. Then, 0.3 µ/ml was dropped over carbon grid and arid into the 

vacuum oven for 1 hour. Compositional analysis was performed by using energy dispersive X-

rays (EDX) technique operating at 5 kV and 10 keV. The sample was prepared for the EDX 

analysis by means of adding 0.3 µ/ml of diluted sample on the aluminum sheet and dried into 

the vacuum oven. X-ray diffraction (XRD; D/Max-2550 PC Rigaku Co., Korea, Cu Kα, λ = 

1.5406 Å) and Raman spectroscopy (in Via-Reflex, Renishaw, Co., South Korea) analyses 

were employed to study the crystallinity structure and phase of all samples. X-ray 

photoelectron spectroscopy (XPS) were carried out using a Thermo Scientific ESCALAB 

250Xi X-ray source to obtain the elemental composition, respectively. Moreover, the surface 

properties were measured using the Brunauer–Emmett–Teller (BET) N2 adsorption-desorption 

isotherm by an automated adsorption system (ASAP-2020). The samples were first degassed 

followed by preconditioning the samples at 150 ºC for 3 hours for the BET analysis. The 

powder sample was used for all techniques except of the EDX and TEM analyses.  

 
 
 
 
 
 
 
 

 

 

 

 



                                                             

 

 

Figure S2. Elemental mapping for the 1D Co3O4@CNF hybrid.  

 

 

 

 

 

 

 

 

 

 



                                                             

 

Figure S3. Cyclic voltammetry (CV) at different scan rates using 3 M KOH electrolyte within 

voltage window from -0.2 V to +0.6 V for (a) 1D Co3O4@CNF1 hybrid, (b) 1D Co3O4@CNF3 

hybrid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                             

 

Figure S4. Charging/discharging (GCD) curves at current densities for (a) 1D Co3O4@CNF1 

hybrid and (b) 1D Co3O4@CNF3 hybrid. 

 

 

 

 

 

 

 

 

 

 



                                                             

 

Figure S5. CV curves using 3 M KOH electrolyte at different scan rates within voltage window 

from -0.2 V to +0.6 V of (a) pristine Co3O4 nanoparticles (b) pristine CNF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                             

 

Figure S6. GCD curves at current densities with voltage window from -0.2 V to +0.6 V for (a) 

pristine Co3O4 nanoparticles (b) pristine CNF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                             

 

Figure S7. CV curves using 3 M KOH electrolyte at different scan rates within voltage window 

from 0 V to 1 V of (a) pristine Co3O4 nanoparticles and (b) pristine CNF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                             

 

Figure S8. GCD curves at current densities with voltage window from 0 V to 1 V for (a) 

pristine Co3O4 nanoparticles and (b) pristine CNF. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                             

 

Figure S9. Energy density with respect to the power density plot at the different current sweep 

rates.  

 

 

 

 

 

 

 

 

 



                                                             

S10. Energy density and power density calculations by the non-linear discharging curve 

The energy density (E), and power density (P) of SSCs cells were determined using the 

following equations:  

𝐸 =
ଵ

௠
∫ 𝑖𝑉𝑑𝑡
௧೏
଴

  ---------------- Equation 1 

𝑃 =
ா

௧೏
  -------------------------- Equation 2 

Where ΔV is the voltage window, m is the mass of active electrode material, td is the 

discharging time, and i is the loading current density. We investigated the Ragone plot using 

the integrated discharging curve as can be seen below.  

 

 

 

 

 

 

 

 

 

 

 

 



                                                             

 

Figure S11. Ragone plot using integrated discharging formula.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                             

 

 

 

 

 

Figure S12(a-b). FESEM images of the 1D Co3O4@CNF flexible paper like film.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                             

 

Figure S13. EDX spectrum of the 1D Co3O4@CNF flexible paper like film.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                             

 

Figure S14. Stability curve of the 1D Co3O4@CNF flexible paper over the 50th cycle at the 

bending state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                             

Table S1. Comparative Electrochemical Performance of 1D Co3O4@CNF in the Three-

Electrode System with Other Previously Reported Materials. 

Electrode materials Voltage 
window  

Electrolyte Specific capacitance Ref. 

1D Co3O4@CNF -0.2 to 0.6 V 3 M KOH 789 F·g−1 at 1 A·g−1 present 

yolk shell-CuCo2Se4 -0.2 to 0.5 V 3 M KOH 512 F·g−1 at 1 A·g−1 [1] 

Co3O4 nanocrystals -0.2 to 0.6 V 6 M KOH 284 F·g−1 at 1 A·g−1 [2] 

Mn-Co sulfide nano 
sheets  

0 to 0.65 V 2 M KOH 1.724 F cm−2 at 1 mA 
cm−2 

[3] 

Porous MnCo2O4.5 -0.2 to 0.6 V 2 M KOH 342 F·g−1 at 0.5 A·g−1 [4] 

porous Co3O4 0 to 0.43 V 3 M KOH 342.1 F·g−1 at 1 A·g−1 [5] 

Co9S8@N−C@MoS2 0 to 0.6 V 3 M KOH 410 F·g−1 at 1 A·g−1 [6] 

Co3O4@N-rGO -0.1 to 0.4 V 3 M KOH 450 F·g−1 at 1 A·g−1 [7] 

NiCo2S4 0 to 0.6 V 1 M KOH 464 F·g−1 at 1 A·g−1 [8] 

NiCo2O4 0 to 0.6 V 1 M KOH 173 F·g−1 at 1 A·g−1 [9] 

MnO2/MnCo2O4 0 to 0.6 V 2 M KOH 497 F·g−1 at 1 A·g−1 [10] 
NCA/Co3O4 -0.05 to 0.45 V 6 M KOH 616 F·g−1 at 1.2 A [10] 

CuCo2S4/CNT/graphene 0 to 0.6 V 1 M Na2SO4 504 F·g−1 at 10 A·g−1 [11] 

CPSC-3rGO -0.2 to 0.8 V 0.2 M Na2SO4 446 F·g−1 at 1 A·g−1 [12] 

Co9S8@Ni (OH)2 0 to 0.5 V 6 M KOH 149.44 mA h g−1 at 
1Ag −1 

[13] 

CoSx@carbon 
core−shell 

0 to 0.4 V 6 M KOH 496 F·g−1 at 0.5 A·g−1 [14] 

petal-like cobalt selenide −0.1 to 0.65 V 2 M KOH 294 F·g−1 at 0.5 A·g−1 [15] 

Co3O4 

nanoflakes@SrGO 
-0.2 to 0.5 V 2 M KOH 406 F·g−1 at 1 A·g−1 [16] 

CoMoO4 nanoclusters −0.9 to 0.6 V 6.0 M KNO3 367 F·g−1 at 1.2 A·g−1 [17] 

Ni-Co selenide 0 to 0.6 V 6 M KOH 742.4 F·g−1 at 1 mA 
cm−2 

[18] 

NiCo2O4 -0.2 to 0.6 V 6 M KOH 225 C. g−1 at 0.5 A g−1 [19] 



                                                             

Table S2. Comparative Electrochemical Performance of 1D Co3O4@CNF in the Two-

Electrode System with Other Previously Reported Symmetric and Asymmetric Materials.  

Electrode 
materials 

Type 
Electrol
yte 

Specific 
capacitance 

Capacitanc
e retention 
(%)/cycles 

Ref. 

Co3O4@CNF Symmetric 
3.0 M 
KOH 

214 F·g−1 @ 
1.0 A·g−1 

94/5000 Present 

CoNW/CF//C
oNW/CF SSC 

Symmetric 
3.0 M 
KOH 

517.33 
mF/cm3 @  
0.26 mA/ 
cm2 

95/5000 [20] 

NCOs Symmetric 
1.0 M 
KOH 

89 F g-1 @ 
0.23 A.g-1 

- [21] 

CNF-RGO Symmetric 
H2SO4-
PVA 

203 F g−1 @ 

0.7 mA/cm2 
99/5000 [22] 

ZnO/Co3O4-
450//AC 
 

Asymmetric 
1.0 M 
KOH 

153 F g-1 @ 
1 A.g-1 

- [23] 

CC@NiC2O4 
//CC@NC 
 

Asymmetric 
6.0 M 
KOH 

89.7 F g-1 @ 
1 A g-1 

86.7/20000 [24] 

Co3O4@Ni3S2 Asymmetric 
3.0 M 
KOH 

126 F g-1 @ 
1 A.g-1 

83.5/5000 [25] 

Ag/NiO Asymmetric  
3.0 M 
KOH 

204 C.g-1 @ 
2.5 A.g-1 

96/4000 [26] 

Co3O4@Ni(O
H)2//AC 

Asymmetric 
6.0 M 
KOH 

110 F.g-1 @ 
2.5 A.g-1 

86/1000 [27] 

3D graphene-
MoS2 hybrid 

Symmetric 
KOH/P
VA 

58.0F.g-1@ 
2 A.g-1 

- [28] 

TaS2 Symmetric 
PVA/Li
Cl 

508 
F/cm3 @ 10 
mV/s 

92/4000 [29] 

Cu2WS4 Symmetric 
PVA/Li
Cl 

583.3 F cm-3 
@ 0.31 A 
cm-3 

95/3000 [30] 

MoS2-
NH2/PANI 
nanosheets 

Symmetric 
1 M 
H2SO4 

58.6 F g-1 @ 
2 A.g-1 

96.5/10000 [31] 

MoS2/CNS Symmetric 
1 M 
Na2SO4 

108 F g-1 @ 
1 A.g-1 

- [32] 

MoS2/G 
nanobelts 

Symmetric 
1 M 
Na2SO4 

278.2 F.g-1 
@ 0.8 A.g-1 

- [33] 



                                                             

MoS2/rGO Symmetric 
1 M 
H2SO4 

306 F.g-1 @ 
0.5 A.g-1 

- [34] 

NiS/MoS2@N
-rGO 

Symmetric 
6 M 
KOH 

1028 F.g-1 
@1 A.g-1 

94.5/50000 [35] 

VSL-
MoS2@3D-Ni 
foam 

Symmetric 
Na2SO4/
PVA 

34.1 F.g-1@ 
1.3 A.g-1 

82.5/10000 [36] 

MoS2/rGO Symmetric NaOH 
323 F.g-1 @ 
0.2 A.g-1 

76.8/500 [37] 

SS/MWCNTs/
MoTe2 

Symmetric 
PVA-
LiClO4 

68.01 F.g-1 

@ 0.2 
mA.cm-2 

94/2000 [38] 

MWCNTs/Mo
Se2 

Symmetric 
PVA-
KOH 

27 F.g-1 @ 
0.4 A/g 

95/1000 [39] 

MoS2/carbon 
cloth 

Symmetric 
PVA-
LiClO4 

368 F.g-1 @ 
5 mV/s 

96.5/5000 
 

[40] 

MoS2/NPG Symmetric 
1 M 
Na2SO4 

102.5 F g−1 
@  1 A g−1 

91.67/5000 [41] 

(Ni,Co)0.85Se//
porous 
graphene 

Asymmetric 
1.0 M 
KOH 

529.3 mF c
m−2 @ 
1A g−1 

85/10000 [42] 

MoS2/PEI-GO Asymmetric Na2SO4 
42.9 @ 
0.5 A g−1 

93.1/8000 [43] 

MoS2−x@CNT
s/Ni 

Asymmetric 
1 M 
Na2SO4 

153.1F g−1 
@ 1 A g−1 

91/3000 [44] 
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