Supplementary Information

Highly dispersive Co₃O₄ nanoparticles incorporated in a cellulose nanofiber for a high performance flexible supercapacitor

Iqra Rabani^a, Jeseung Yoo^a, Hyo-Sun Kim^a, Do Van Lam^b, Sajjad Hussain^a, K. Karuppasamy^c

and Young-Soo Seo^a*

^aDepartment of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea.

^bDepartment of Applied Nanomechanics, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea

^cDivision of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.

*Corresponding author: Prof. Young-Soo Seo; E-mail: <u>ysseo@sejong.ac.kr</u>

Content

S1. Characterizations

Figure S2. Elemental mapping for the 1D Co3O4@CNF hybrid.

Figure S3. Cyclic voltammetry (CV) at different scan rates using 3 M KOH electrolyte within voltage window from -0.2 V to +0.6 V for (a) 1D Co₃O₄@CNF1 hybrid, (b) 1D Co₃O₄@CNF3 hybrid.

Figure S4. Charging/discharging (GCD) curves at current densities for **(a)** 1D Co₃O₄@CNF1 hybrid and **(b)** 1D Co₃O₄@CNF3 hybrid.

Figure S5. CV curves using 3 M KOH electrolyte at different scan rates within voltage window from -0.2 V to +0.6 V of (a) pristine Co₃O₄ nanoparticles (b) pristine CNF.

Figure S6. GCD curves at current densities with voltage window from -0.2 V to +0.6 V for (a) pristine Co₃O₄ nanoparticles (b) pristine CNF.

Figure S7. CV curves using 3 M KOH electrolyte at different scan rates within voltage window from 0 V to 1 V of (a) pristine Co₃O₄ nanoparticles and (b) pristine CNF.

Figure S8. GCD curves at current densities with voltage window from 0 V to 1 V for (a) pristine Co₃O₄ nanoparticles and (b) pristine CNF.

Figure S9. Energy density with respect to the power density plot at the different current sweep rates.

S10. Energy density and power density calculations by the non-linear discharging curve

Figure S11. Ragone plot using integrated discharging formula.

Figure S12(a-b). FESEM images of the 1D Co₃O₄@CNF flexible paper like film.

Figure S13. EDX spectrum of the 1D Co₃O₄@CNF flexible paper like film.

Figure S14. Stability curve of the 1D Co₃O₄@CNF flexible paper over the 50th cycle at the bending state.

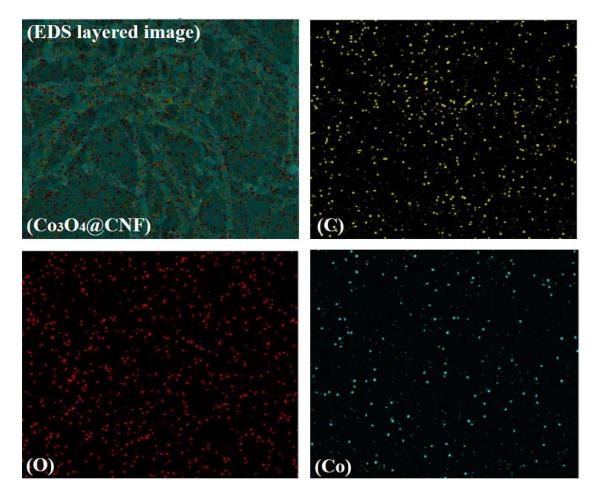
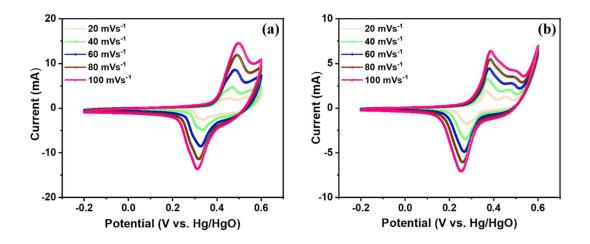
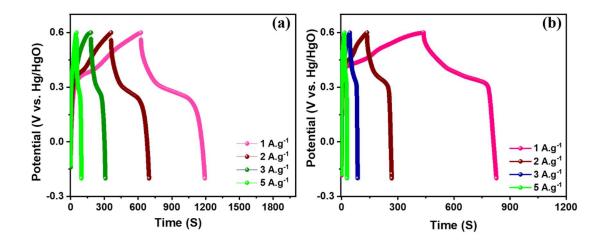
Table S1. Comparative Electrochemical Performance of 1D Co₃O₄@CNF in the Three-Electrode System with Other Previously Reported Materials.

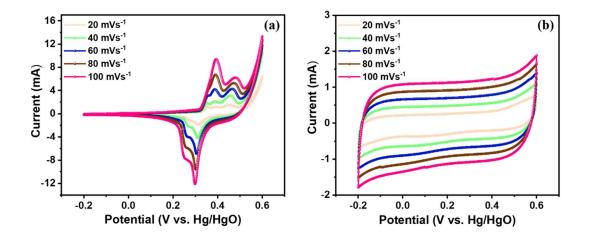
Table S2. Comparative Electrochemical Performance of 1D Co₃O₄@CNF in the Two-Electrode System with Other Previously Reported Symmetric and Asymmetric Materials.

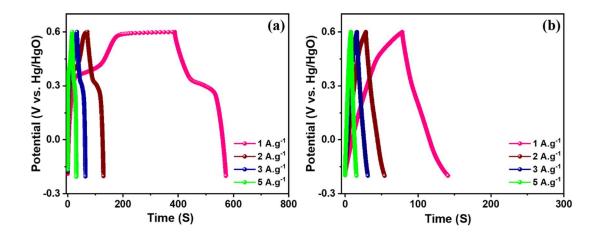
References

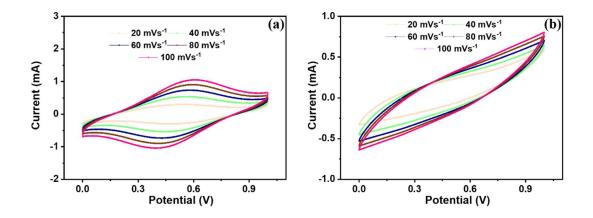
S1. Characterizations

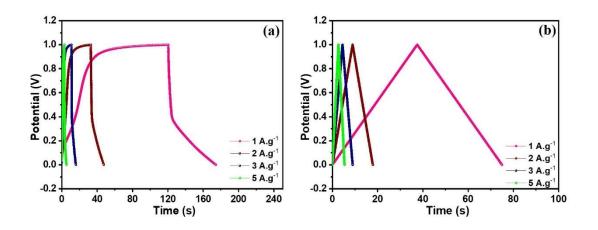
The surface morphology of the as prepared (1D Co_3O_4 @CNF hybrid, CNF and Co_3O_4) was analyzed using field emission scanning electron microscopy (FESEM; (JEOL JSM-6700F)) and transmission electron microscopy (TEM; (FEI Tecnai F30 S-TWIN TEM)). To TEM, sample were prepared by means of adding few drops of ethanol with samples and ultrasonically sonicated for about 1 min. Then, 0.3 µ/ml was dropped over carbon grid and arid into the vacuum oven for 1 hour. Compositional analysis was performed by using energy dispersive Xrays (EDX) technique operating at 5 kV and 10 keV. The sample was prepared for the EDX analysis by means of adding 0.3 μ /ml of diluted sample on the aluminum sheet and dried into the vacuum oven. X-ray diffraction (XRD; D/Max-2550 PC Rigaku Co., Korea, Cu K α , λ = 1.5406 Å) and Raman spectroscopy (in Via-Reflex, Renishaw, Co., South Korea) analyses were employed to study the crystallinity structure and phase of all samples. X-ray photoelectron spectroscopy (XPS) were carried out using a Thermo Scientific ESCALAB 250Xi X-ray source to obtain the elemental composition, respectively. Moreover, the surface properties were measured using the Brunauer-Emmett-Teller (BET) N2 adsorption-desorption isotherm by an automated adsorption system (ASAP-2020). The samples were first degassed followed by preconditioning the samples at 150 °C for 3 hours for the BET analysis. The powder sample was used for all techniques except of the EDX and TEM analyses.


Figure S2. Elemental mapping for the 1D Co3O4@CNF hybrid.


Figure S3. Cyclic voltammetry (CV) at different scan rates using 3 M KOH electrolyte within voltage window from -0.2 V to +0.6 V for (a) 1D Co_3O_4 @CNF1 hybrid, (b) 1D Co_3O_4 @CNF3 hybrid.


Figure S4. Charging/discharging (GCD) curves at current densities for **(a)** 1D Co₃O₄@CNF1 hybrid and **(b)** 1D Co₃O₄@CNF3 hybrid.


Figure S5. CV curves using 3 M KOH electrolyte at different scan rates within voltage window from -0.2 V to +0.6 V of (a) pristine Co₃O₄ nanoparticles (b) pristine CNF.

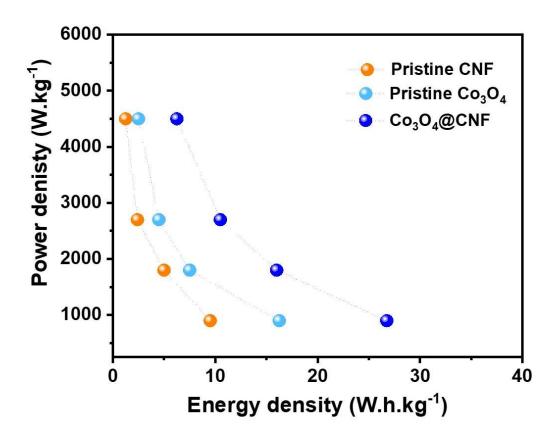

Figure S6. GCD curves at current densities with voltage window from -0.2 V to +0.6 V for (a) pristine Co₃O₄ nanoparticles (b) pristine CNF.

Figure S7. CV curves using 3 M KOH electrolyte at different scan rates within voltage window from 0 V to 1 V of (a) pristine Co₃O₄ nanoparticles and (b) pristine CNF.

Figure S8. GCD curves at current densities with voltage window from 0 V to 1 V for (a) pristine Co₃O₄ nanoparticles and (b) pristine CNF.

Figure S9. Energy density with respect to the power density plot at the different current sweep rates.

S10. Energy density and power density calculations by the non-linear discharging curve

The energy density (E), and power density (P) of SSCs cells were determined using the following equations:

 $P = \frac{E}{t_d}$ ----- Equation 2

Where ΔV is the voltage window, m is the mass of active electrode material, t_d is the discharging time, and i is the loading current density. We investigated the Ragone plot using the integrated discharging curve as can be seen below.

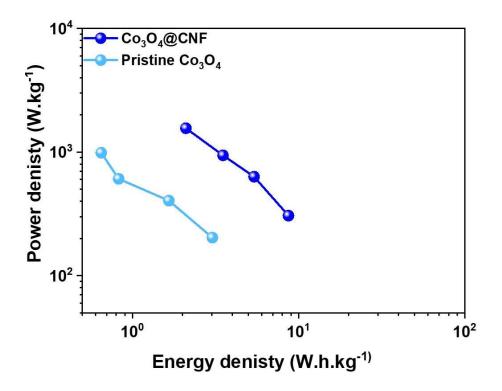


Figure S11. Ragone plot using integrated discharging formula.

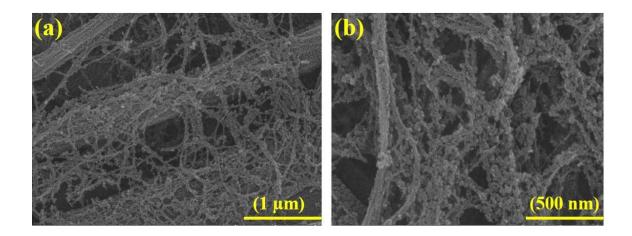


Figure S12(a-b). FESEM images of the 1D Co₃O₄@CNF flexible paper like film.

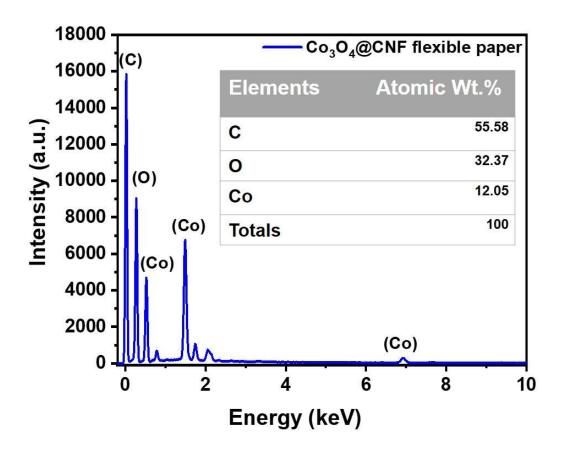
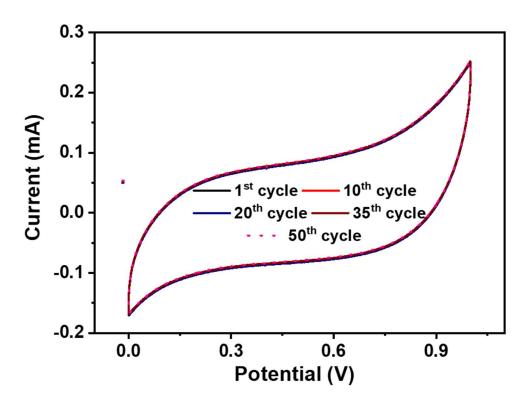



Figure S13. EDX spectrum of the 1D Co₃O₄@CNF flexible paper like film.

Figure S14. Stability curve of the 1D Co₃O₄@CNF flexible paper over the 50th cycle at the bending state.

Table S1. Comparative Electrochemical Performance of 1D Co₃O₄@CNF in the Three-Electrode System with Other Previously Reported Materials.

Electrode materials	Voltage window	Electrolyte	Specific capacitance	Ref.
1D Co ₃ O ₄ @CNF	-0.2 to 0.6 V	3 М КОН	789 $F \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	present
yolk shell-CuCo ₂ Se ₄	-0.2 to 0.5 V	3 М КОН	512 $F \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	[1]
Co ₃ O ₄ nanocrystals	-0.2 to 0.6 V	6 М КОН	284 $F \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	[2]
Mn-Co sulfide nano sheets	0 to 0.65 V	2 М КОН	1.724 F cm ⁻² at 1 mA cm ⁻²	[3]
Porous MnCo ₂ O _{4.5}	-0.2 to 0.6 V	2 M KOH	$342 \text{ F} \cdot \text{g}^{-1} \text{ at } 0.5 \text{ A} \cdot \text{g}^{-1}$	[4]
porous Co ₃ O ₄	0 to 0.43 V	3 М КОН	$342.1 \text{ F} \cdot \text{g}^{-1} \text{ at } 1 \text{ A} \cdot \text{g}^{-1}$	[5]
$Co_9S_8@N-C@MoS_2$	0 to 0.6 V	3 М КОН	410 $F \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	[6]
Co ₃ O ₄ @N-rGO	-0.1 to 0.4 V	3 М КОН	450 $\operatorname{F} \cdot \operatorname{g}^{-1}$ at 1 $\operatorname{A} \cdot \operatorname{g}^{-1}$	[7]
NiCo ₂ S ₄	0 to 0.6 V	1 M KOH	464 $F \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	[8]
NiCo ₂ O ₄	0 to 0.6 V	1 M KOH	$173 \text{ F} \cdot \text{g}^{-1} \text{ at } 1 \text{ A} \cdot \text{g}^{-1}$	[9]
MnO ₂ /MnCo ₂ O ₄	0 to 0.6 V	2 М КОН	497 $F \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	[10]
NCA/Co ₃ O ₄	-0.05 to 0.45 V	6 M KOH	$616 \text{ F} \cdot \text{g}^{-1} \text{ at } 1.2 \text{ A}$	[10]
CuCo ₂ S ₄ /CNT/graphene	0 to 0.6 V	1 M Na ₂ SO ₄	504 $F \cdot g^{-1}$ at 10 $A \cdot g^{-1}$	[11]
CPSC-3rGO	-0.2 to 0.8 V	0.2 M Na ₂ SO ₄	446 $F \cdot g^{-1}$ at 1 $A \cdot g^{-1}$	[12]
Co ₉ S ₈ @Ni (OH) ₂	0 to 0.5 V	6 М КОН	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[13]
CoS _x @carbon core–shell	0 to 0.4 V	6 М КОН	496 $F \cdot g^{-1}$ at 0.5 $A \cdot g^{-1}$	[14]
petal-like cobalt selenide	-0.1 to 0.65 V	2 M KOH	294 $F \cdot g^{-1}$ at 0.5 $A \cdot g^{-1}$	[15]
Co ₃ O ₄ nanoflakes@SrGO	-0.2 to 0.5 V	2 М КОН	$406 \text{ F} \cdot \text{g}^{-1} \text{ at } 1 \text{ A} \cdot \text{g}^{-1}$	[16]
CoMoO ₄ nanoclusters	-0.9 to 0.6 V	6.0 M KNO ₃	$367 \text{ F} \cdot \text{g}^{-1} \text{ at } 1.2 \text{ A} \cdot \text{g}^{-1}$	[17]
Ni-Co selenide	0 to 0.6 V	6 M KOH	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[18]
NiCo ₂ O ₄	-0.2 to 0.6 V	6 M KOH	225 C. g^{-1} at 0.5 A g^{-1}	[19]

Electrode materials	Туре	Electrol yte	Specific capacitance	Capacitanc e retention (%)/cycles	Ref.
Co ₃ O ₄ @CNF	Symmetric	3.0 M KOH	$\begin{array}{c} 214 \ \mathrm{F} \cdot \mathrm{g}^{-1} @ \\ 1.0 \ \mathrm{A} \cdot \mathrm{g}^{-1} \end{array}$	94/5000	Present
CoNW/CF//C oNW/CF SSC	Symmetric	3.0 M KOH	517.33 mF/cm ³ @ 0.26 mA/ cm ²	95/5000	[20]
NCOs	Symmetric	1.0 M KOH	89 F g ⁻¹ @ 0.23 A.g ⁻¹	-	[21]
CNF-RGO	Symmetric	H ₂ SO4- PVA	203 F g ⁻¹ @ 0.7 mA/cm ²	99/5000	[22]
ZnO/Co ₃ O ₄ - 450//AC	Asymmetric	1.0 M KOH	153 F g ⁻¹ @ 1 A.g ⁻¹	-	[23]
CC@NiC2O4 //CC@NC	Asymmetric	6.0 M KOH	89.7 F g ⁻¹ @ 1 A g ⁻¹	86.7/20000	[24]
Co ₃ O ₄ @Ni ₃ S ₂	Asymmetric	3.0 M KOH	126 F g ⁻¹ @ 1 A.g ⁻¹	83.5/5000	[25]
Ag/NiO	Asymmetric	3.0 M KOH	204 C.g ⁻¹ @ 2.5 A.g ⁻¹	96/4000	[26]
Co ₃ O ₄ @Ni(O H)2//AC	Asymmetric	6.0 M KOH	110 F.g ⁻¹ @ 2.5 A.g ⁻¹	86/1000	[27]
3D graphene- MoS ₂ hybrid	Symmetric	KOH/P VA	58.0F.g ⁻¹ @ 2 A.g ⁻¹	-	[28]
TaS ₂	Symmetric	PVA/Li Cl	508 F/cm ³ @ 10 mV/s	92/4000	[29]
Cu ₂ WS ₄	Symmetric	PVA/Li Cl	583.3 F cm ⁻³ @ 0.31 A cm ⁻³	95/3000	[30]
MoS ₂ - NH ₂ /PANI nanosheets	Symmetric	$\begin{vmatrix} 1 & M \\ H_2 SO_4 \end{vmatrix}$	58.6 F g ⁻¹ @ 2 A.g ⁻¹	96.5/10000	[31]
MoS ₂ /CNS	Symmetric	1 M Na ₂ SO ₄	108 F g ⁻¹ @ 1 A.g ⁻¹	-	[32]
MoS ₂ /G nanobelts	Symmetric	1 M Na ₂ SO ₄	278.2 F.g ⁻¹ @ 0.8 A.g ⁻¹	-	[33]

Table S2. Comparative Electrochemical Performance of 1D Co₃O₄@CNF in the Two-Electrode System with Other Previously Reported Symmetric and Asymmetric Materials.

MoS ₂ /rGO	Symmetric	1 M H ₂ SO ₄	306 F.g ⁻¹ @ 0.5 A.g ⁻¹	-	[34]
NiS/MoS2@N -rGO	Symmetric	6 M KOH	1028 F.g ⁻¹ @1 A.g ⁻¹	94.5/50000	[35]
VSL- MoS2@3D-Ni foam	Symmetric	Na ₂ SO ₄ / PVA	34.1 F.g ⁻¹ @ 1.3 A.g ⁻¹	82.5/10000	[36]
MoS ₂ /rGO	Symmetric	NaOH	323 F.g ⁻¹ @ 0.2 A.g ⁻¹	76.8/500	[37]
SS/MWCNTs/ MoTe ₂	Symmetric	PVA- LiClO ₄	$\begin{array}{ccc} 68.01 & \text{F.g}^{-1} \\ \hline @ & 0.2 \\ \text{mA.cm}^{-2} \end{array}$	94/2000	[38]
MWCNTs/Mo Se ₂	Symmetric	PVA- KOH	27 F.g ⁻¹ @ 0.4 A/g	95/1000	[39]
MoS ₂ /carbon cloth	Symmetric	PVA- LiClO ₄	368 F.g ⁻¹ @ 5 mV/s	96.5/5000	[40]
MoS ₂ /NPG	Symmetric	1 M Na ₂ SO ₄	$\begin{array}{c} 102.5 \text{ F g}^{-1} \\ \hline @ 1 \text{ A g}^{-1} \end{array}$	91.67/5000	[41]
(Ni,Co) _{0.85} Se// porous graphene	Asymmetric	1.0 M KOH	$\begin{array}{c} 529.3 \text{ mF c} \\ m^{-2} & @ \\ 1 \text{A g}^{-1} \end{array}$	85/10000	[42]
MoS ₂ /PEI-GO	Asymmetric	Na2SO4	$\begin{array}{c} 42.9 & @ \\ 0.5 \ A \ g^{-1} \end{array}$	93.1/8000	[43]
MoS _{2-x} @CNT s/Ni	Asymmetric	1 M Na ₂ SO ₄	$\begin{array}{c} 153.1 \mathrm{F} \ \mathrm{g}^{-1} \\ \textcircled{a} \ 1 \ \mathrm{A} \ \mathrm{g}^{-1} \end{array}$	91/3000	[44]

References

- F. Tavakoli, B. Rezaei, A.R. Taghipour Jahromi, A.A. Ensafi, Facile Synthesis of Yolk-Shelled CuCo₂Se₄ Microspheres as a Novel Electrode Material for Supercapacitor Application, ACS Applied Materials & Interfaces 12 (2019) 418-427.
- [2] D. Sun, L. He, R. Chen, Y. Liu, B. Lv, S. Lin, B. Lin, Biomorphic composites composed of octahedral Co₃O₄ nanocrystals and mesoporous carbon microtubes templated from cotton for excellent supercapacitor electrodes, Applied Surface Science 465 (2019) 232-240.
- [3] G. Li, Z. Chang, T. Li, L. Ma, K. Wang, Hierarchical Mn-Co sulfide nanosheets on nickel foam by electrochemical co-deposition for high-performance pseudocapacitors, Ionics 25 (2019) 3885-3895.
- [4] F. Liao, X. Han, Y. Zhang, C. Xu, H. Chen, Solvothermal synthesis of porous MnCo₂O_{4.5} spindle-like microstructures as high-performance electrode materials for supercapacitors, Ceramics International 44 (2018) 22622-22631.
- [5] Z. Zhu, C. Han, T.-T. Li, Y. Hu, J. Qian, S. Huang, MOF-templated syntheses of porous Co₃O₄ hollow spheres and micro-flowers for enhanced performance in supercapacitors, CrystEngComm 20 (2018) 3812-3816.
- [6] X. Hou, Y. Zhang, Q. Dong, Y. Hong, Y. Liu, W. Wang, J. Shao, W. Si, X. Dong, Metal organic framework derived core-shell structured Co9S8@ N-C@MoS₂ nanocubes for supercapacitor, ACS Applied Energy Materials 1 (2018) 3513-3520.
- [7] R. Atchudan, T.N.J.I. Edison, D. Chakradhar, N. Karthik, S. Perumal, Y.R. Lee, Onepot dual product synthesis of hierarchical Co₃O₄@N-rGO for supercapacitors, N-GDs for label-free detection of metal ion and bio-imaging applications, Ceramics International 44 (2018) 2869-2883.

- [8] P. Xu, W. Zeng, S. Luo, C. Ling, J. Xiao, A. Zhou, Y. Sun, K. Liao, 3D Ni-Co selenide nanorod array grown on carbon fiber paper: towards high-performance flexible supercapacitor electrode with new energy storage mechanism, Electrochimica Acta 241 (2017) 41-49.
- [9] Y. Zhang, H. Xuan, Y. Xu, B. Guo, H. Li, L. Kang, P. Han, D. Wang, Y. Du, One-step large scale combustion synthesis mesoporous MnO₂/MnCo₂O₄ composite as electrode material for high-performance supercapacitors, Electrochimica Acta 206 (2016) 278-290.
- [10] G. Sun, L. Ma, J. Ran, X. Shen, H. Tong, Incorporation of homogeneous Co₃O₄ into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: implications for high performance asymmetric supercapacitors, Journal of Materials Chemistry A 4 (2016) 9542-9554.
- [11] N.I. Chandrasekaran, H. Muthukumar, A.D. Sekar, A. Pugazhendhi, M.J.J.o.M.L. Manickam, High-performance asymmetric supercapacitor from nanostructured tin nickel sulfide (SnNi₂S₄) synthesized via microwave-assisted technique, 266 (2018) 649-657.
- [12] J.S. Lee, C. Lee, J. Jun, D.H. Shin, J. Jang, A metal-oxide nanofiber-decorated threedimensional graphene hybrid nanostructured flexible electrode for high-capacity electrochemical capacitors, Journal of Materials Chemistry A 2 (2014) 11922-11929.
- [13] F. Zhu, M. Yan, Y. Liu, H. Shen, Y. Lei, W. Shi, Hexagonal prism-like hierarchical Co₉S₈@Ni(OH)₂ core–shell nanotubes on carbon fibers for high-performance asymmetric supercapacitors, Journal of Materials Chemistry A 5 (2017) 22782-22789.
- [14] Y. Liu, J. Zhou, W. Fu, P. Zhang, X. Pan, E. Xie, In situ synthesis of CoSx@carbon core-shell nanospheres decorated in carbon nanofibers for capacitor electrodes with superior rate and cycling performances, Carbon 114 (2017) 187-197.

- [15] H. Peng, G. Ma, K. Sun, Z. Zhang, J. Li, X. Zhou, Z. Lei, A novel aqueous asymmetric supercapacitor based on petal-like cobalt selenide nanosheets and nitrogen-doped porous carbon networks electrodes, Journal of Power Sources 297 (2015) 351-358.
- [16] M. Qorbani, T.-c. Chou, Y.-H. Lee, S. Samireddi, N. Naseri, A. Ganguly, A. Esfandiar, C.-H. Wang, L.-C. Chen, K.-H. Chen, Multi-porous Co₃O₄ nanoflakes@ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors, Journal of Materials Chemistry A 5 (2017) 12569-12577.
- [17] J. Li, C. Zhao, Y. Yang, C. Li, T. Hollenkamp, N. Burke, Z.-Y. Hu, G. Van Tendeloo,
 W. Chen, Synthesis of monodispersed CoMoO₄ nanoclusters on the ordered mesoporous carbons for environment-friendly supercapacitors, Journal of Alloys and Compounds 810 (2019) 151841.
- [18] Y. Wang, W. Zhang, X. Guo, K. Jin, Z. Chen, Y. Liu, L. Yin, L. Li, K. Yin, L. Sun, Ni–Co Selenide Nanosheet/3D Graphene/Nickel Foam Binder-Free Electrode for High-Performance Supercapacitor, ACS applied materials & interfaces 11 (2019) 7946-7953.
- [19] H. Fu, Y. Liu, L. Chen, Y. Shi, W. Kong, J. Hou, F. Yu, T. Wei, H. Wang, X. Guo, Designed formation of NiCo₂O₄ with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction, Electrochimica Acta 296 (2019) 719-729.
- [20] P. Howli, S. Das, S. Sarkar, M. Samanta, K. Panigrahi, N.S. Das, K.K. Chattopadhyay, Co3O4 nanowires on flexible carbon fabric as a binder-free electrode for all solid-state symmetric supercapacitor, ACS omega 2 (2017) 4216-4226.
- [21] X. Lu, X. Huang, S. Xie, T. Zhai, C. Wang, P. Zhang, M. Yu, W. Li, C. Liang, Y. Tong, Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors, Journal of Materials Chemistry 22 (2012) 13357-13364.

- [22] K. Gao, Z. Shao, J. Li, X. Wang, X. Peng, W. Wang, F. Wang, Cellulose nanofiber– graphene all solid-state flexible supercapacitors, Journal of Materials Chemistry A 1 (2013) 63-67.
- [23] M. Gao, W.-K. Wang, Q. Rong, J. Jiang, Y.-J. Zhang, H.-Q. Yu, Porous ZnO-coated Co₃O₄ nanorod as a high-energy-density supercapacitor material, ACS applied materials & interfaces 10 (2018) 23163-23173.
- [24] C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Rational design of metal-organic framework derived hollow NiCo₂O₄ arrays for flexible supercapacitor and electrocatalysis, Advanced Energy Materials 7 (2017) 1602391.
- [25] J. Zhang, J. Lin, J. Wu, R. Xu, M. Lai, C. Gong, X. Chen, P. Zhou, Excellent electrochemical performance hierarchical Co₃O₄@Ni₃S₂ core/shell nanowire arrays for asymmetric supercapacitors, Electrochimica Acta 207 (2016) 87-96.
- [26] S. Nagamuthu, K.-S. Ryu, Synthesis of Ag/NiO honeycomb structured nanoarrays as the electrode material for high performance asymmetric supercapacitor devices, Scientific reports 9 (2019) 1-11.
- [27] C.-h. Tang, X. Yin, H. Gong, Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co₃O₄@Ni(OH)₂ core–shell electrode, ACS applied materials & interfaces 5 (2013) 10574-10582.
- [28] K. Singh, S. Kumar, K. Agarwal, K. Soni, V.R. Gedela, K. Ghosh, Three-dimensional graphene with MoS₂ nanohybrid as potential energy storage/transfer device, Scientific reports 7 (2017) 1-12.
- [29] J. Wu, J. Peng, Z. Yu, Y. Zhou, Y. Guo, Z. Li, Y. Lin, K. Ruan, C. Wu, Y. Xie, Acidassisted exfoliation toward metallic sub-nanopore TaS₂ monolayer with high volumetric capacitance, Journal of the American Chemical Society 140 (2018) 493-498.

- [30] X. Hu, W. Shao, X. Hang, X. Zhang, W. Zhu, Y. Xie, Superior Electrical Conductivity in Hydrogenated Layered Ternary Chalcogenide Nanosheets for Flexible All-Solid-State Supercapacitors, Angewandte Chemie International Edition 55 (2016) 5733-5738.
- [31] R. Zeng, Z. Li, L. Li, Y. Li, J. Huang, Y. Xiao, K. Yuan, Y. Chen, Covalent connection of polyaniline with MoS₂ nanosheets toward ultrahigh rate capability supercapacitors, ACS Sustainable Chemistry & Engineering 7 (2019) 11540-11549.
- [32] T.N. Khawula, K. Raju, P.J. Franklyn, I. Sigalas, K.I. Ozoemena, Symmetric pseudocapacitors based on molybdenum disulfide (MoS₂)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage, Journal of Materials Chemistry A 4 (2016) 6411-6425.
- [33] Y. Jia, H. Wan, L. Chen, H. Zhou, J. Chen, Hierarchical nanosheet-based MoS₂/graphene nanobelts with high electrochemical energy storage performance, Journal of Power Sources 354 (2017) 1-9.
- [34] H. Ji, S. Hu, Z. Jiang, S. Shi, W. Hou, G. Yang, Directly scalable preparation of sandwiched MoS₂/graphene nanocomposites via ball-milling with excellent electrochemical energy storage performance, Electrochimica Acta 299 (2019) 143-151.
- [35] X. Xu, W. Zhong, X. Zhang, J. Dou, Z. Xiong, Y. Sun, T. Wang, Y. Du, Flexible symmetric supercapacitor with ultrahigh energy density based on NiS/MoS₂@N-rGO hybrids electrode, Journal of colloid and interface science 543 (2019) 147-155.
- [36] R.K. Mishra, A.K. Kushwaha, S. Kim, S.G. Seo, S.H. Jin, Vertical-slate-like MoS₂ nanostructures on 3D-Ni-foam for binder-free, low-cost, and scalable solid-state symmetric supercapacitors, Current Applied Physics 19 (2019) 1-7.

- [37] T. Xue, Y. Yang, X.-H. Yan, Z.-L. Zou, F. Han, Z. Yang, Free-standing and binderfree Molybdenum bisulfide nanospheres/reduced graphene oxide composite paper as flexible electrode for symmetric supercapacitor, Materials Research Express 6 (2019) 095029.
- [38] S.S. Karade, B.R. Sankapal, Materials Mutualism through EDLC-Behaved MWCNTs with Pseudocapacitive MoTe₂ Nanopebbles: Enhanced Supercapacitive Performance, ACS Sustainable Chemistry & Engineering 6 (2018) 15072-15082.
- [39] S.S. Karade, B.R. Sankapal, Two dimensional cryptomelane like growth of MoS₂ over MWCNTs: Symmetric all-solid-state supercapacitor, Journal of Electroanalytical Chemistry 802 (2017) 131-138.
- [40] M.S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu, Y. Xi, High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres, Journal of Power Sources 285 (2015) 63-69.
- [41] S. Zhao, W. Xu, Z. Yang, X. Zhang, Q. Zhang, One-pot hydrothermal synthesis of nitrogen and phosphorus Co-doped graphene decorated with flower-like molybdenum sulfide for enhanced supercapacitor performance, Electrochimica Acta 331 (2020) 135265.
- [42] C. Xia, Q. Jiang, C. Zhao, P.M. Beaujuge, H.N. Alshareef, Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes, Nano Energy 24 (2016) 78-86.
- [43] M.-C. Liu, Y. Xu, Y.-X. Hu, Q.-Q. Yang, L.-B. Kong, W.-W. Liu, W.-J. Niu, Y.-L. Chueh, Electrostatically Charged MoS₂/Graphene Oxide Hybrid Composites for Excellent Electrochemical Energy Storage Devices, ACS Applied Materials & Interfaces 10 (2018) 35571-35579.

[44] P. Sun, R. Wang, Q. Wang, H. Wang, X. Wang, Uniform MoS₂ nanolayer with sulfur vacancy on carbon nanotube networks as binder-free electrodes for asymmetrical supercapacitor, Applied Surface Science 475 (2019) 793-802.