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I. Determination of properties of the UCNPs and nanofluids

The absorption coefficient,  (in ), of an absorbing species J in the (nano)fluid is𝛼𝐽 𝑚 ‒ 1

𝛼𝐽 = (ln 10)
𝐴𝐽

𝐿

where  is the absorbance of species J at 980 nm using the solvent as the reference and  is 𝐴𝐽 𝐿

the optical pathlength.

The absorption cross-section,  (in ), of a single absorber J in solution is𝜎𝐽 𝑚2

𝜎𝐽 =
𝛼𝐽

𝑁𝐽

 is the number density of J-th absorbers in (number of absorbers-J) .𝑁𝐽 𝑚 ‒ 3

For a solution of absorbers with concentration  (in ),  is 𝐶𝐽 𝑚𝑔 𝑚𝐿 = 𝑚𝑔 𝑐𝑚 ‒ 3 𝑁𝐽

𝑁𝐽(#𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟𝑠 𝑚 ‒ 3) =
𝐶𝐽 

𝑚𝐽
× 106

where  (in ) is the mass of the absorber-J.𝑚𝐽 𝑚𝑔

For a pure substance, like the solvent, the absorption cross-section, , is𝜎𝑆

𝜎𝑆 =
𝛼𝑆

𝑁𝑆
=

𝛼𝑆𝑀𝑆

𝜌𝑆𝑁𝐴

where , , , and  are the absorption coefficient (in ), the number density in #S 𝛼𝑆 𝑁𝑆 𝑀𝑆 𝜌𝑆 𝑚 ‒ 1

, the molar mass in , and the mass density , of the substance and  is the 𝑚 ‒ 3 𝑘𝑔 𝑚𝑜𝑙 ‒ 1 𝑘𝑔 𝑚 ‒ 3 𝑁𝐴

Avogadro constant in .𝑚𝑜𝑙 ‒ 1

The molar mass of a nanoparticle with composition LiYF4:Er3+ %/Yb3+ % represented as 𝑦 𝑥

, is:𝐿𝑖𝑌1 ‒ 𝑥 ‒ 𝑦𝑌𝑏𝑥𝐸𝑟𝑦𝐹4

𝑀𝑃 = [𝑀𝐿𝑖 + (1 ‒ 𝑥 ‒ 𝑦)𝑀𝑌 + 𝑦𝑀𝑌𝑏 + 𝑥𝑀𝐸𝑟 + 4𝑀𝐹] × 10 ‒ 3 𝑘𝑔 𝑚𝑜𝑙 ‒ 1

where  is the atomic molar mass (in ) of element .𝑀𝑋 𝑔 𝑚𝑜𝑙 ‒ 1 𝑋

Given the UCNPs have a square (or tetragonal) bipyramid shape with small diagonal, , 𝑑𝑠

and long diagonal , its volume, , is 𝑑𝑙 𝑉𝑃
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𝑉𝑃 =
1
6

𝑑2
𝑠𝑑𝑙

The mass of one UCNP, , is𝑚𝑃

𝑚𝑃 = 𝜌𝐿𝑖𝑌𝐹4
𝑉𝑃

𝑀𝑃

𝑀𝐿𝑖𝑌𝐹4

where  is the mass density (in ) of the undoped NP, which is assumed to be the 
𝜌𝐿𝑖𝑌𝐹4 𝑘𝑔 𝑚 ‒ 3

same as the bulk ,  is the molar mass, in , of undoped NPs, and it is 𝐿𝑖𝑌𝐹4(𝑠) 𝑀𝐿𝑖𝑌𝐹4 𝑘𝑔 𝑚𝑜𝑙 ‒ 1

assumed that the average volume of the undoped NPs, , is the same as that of doped 
𝑉𝐿𝑖𝑌𝐹4

NPs, .𝑉𝑃

The number of UCNPs, , and of solvent molecules, , exposed to the laser beam are𝑁𝑃,𝑏 𝑁𝑆,𝑏

𝑁𝑃,𝑏 = 𝑁𝑝𝐴𝑏𝐿,  𝑁𝑆,𝑏 = 𝑁𝑆𝐴𝑏𝐿

where  (in ) is the number density of NPs,  (in ) is the number density of 𝑁𝑃 #𝑁𝑃𝑠 𝑚 ‒ 3 𝑁𝑆 #𝑆 𝑚 ‒ 3

solvent,  (in ) is the area of the laser spot, and  (in ) is the optical pathlength.𝐴𝑏 𝑚2 𝐿 𝑚

II. Transient heating curves of UCNPs

Figure S1. Transient heating curves recorded by the immersed thermocouple in (a) lipid 
bilayer-capped and (b) uncapped UCNPs in H2O, and (c) uncapped UCNPs in D2O.
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III. Determination of the laser power density

To calculate the laser power density, the optical power (PL) and the beam profile were 

measured by placing a power meter (FieldMaxII-TOP OP-2 Vis, Coherent) and a CCD camera 

(BC106N-VIS/M, Thorlabs), respectively, at the same position where the sample will be placed 

during all measurements. Through the 2D projection of the beam profile (inset of Fig. S2), the 

intensity at each pixel was correlated to the measured optical power and divided by the pixel 

area (6.45×6.45 µm2). An average laser power density (PD) was computed considering only 

values higher than 36.8%, corresponding to 1/e cut-off value for Gaussian beams (Fig. S2).

Figure S2. Laser power density as a function of the laser power as defined in the laser control 
software. The inset corresponds to the 2D projection of the beam profile for a laser power 
density of 125 W·cm−2.
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IV. Power gain via absorption

According to the Beer-Lambert law, the transmitted intensity  or radiant power  (in ) 𝐼 𝑃 𝑊

is

𝐼 = 𝐼0𝑒
‒ 𝛼𝑁𝐿

→𝑃𝐷 = 𝑃𝐷,0𝑒
‒ 𝛼𝑁𝐿

where the power density  (in ) is the intensity or radiant power divided by 
𝑃𝐷 ≡

𝐼
𝐴𝑏

=
𝑃
𝐴𝑏 𝑊 𝑚 ‒ 2

the area of the laser beam spot, , and  (in ) is the absorption coefficient of the 𝐴𝑏 𝛼𝑁 𝑚 ‒ 1

nanofluid. The differential of this attenuation ( ) law is𝛼𝑁 > 0

𝑑𝑃𝐷 =‒ 𝛼𝑁𝑃𝐷𝑑𝑥

or

𝑑𝑃𝐷

𝑑𝑥
=‒ 𝛼𝑁𝑃𝐷 =

𝑑〈𝑃〉
𝑑𝑉

≡‒
𝑑𝑊𝑎𝑏𝑠

𝑑𝑉

is the infinitesimal net power lost,  (in ), by the laser beam per unit volume,  (in ), 𝑑〈𝑃〉 𝑊 𝑑𝑉 𝑚3

which due to conservation of energy should be the power gained by the nanofluid,  (in 𝑑𝑊𝑎𝑏𝑠

), due to absorption. Thus, the infinitesimal power absorbed from the laser beam is𝑊

𝑑𝑊𝑎𝑏𝑠 = 𝛼𝑁𝑃𝐷𝑑𝑉𝑏 = 𝐴𝑏𝛼𝑁𝑃𝐷𝑑𝑥 = 𝐴𝑏𝛼𝑁𝑃𝐷,0𝑒
‒ 𝛼𝑁𝑥

𝑑𝑥

where  is the element of volume of the excitation cylinder of laser beam travelling 𝑑𝑉𝑏 = 𝐴𝑏𝑑𝑥

an infinitesimal pathlength . The total power absorbed for a pathlength  is𝑑𝑥 𝐿

𝑊𝑎𝑏𝑠 = 𝐴𝑏𝛼𝑁𝑃𝐷,0

𝐿

∫
0

𝑒
‒ 𝛼𝑁𝑥

𝑑𝑥 = 𝐴𝑏𝛼𝑁𝑃𝐷,0( ‒ � 1𝛼𝑁
𝑒

‒ 𝛼𝑁𝑥|𝐿
0) = (1 ‒ 𝑒

‒ 𝛼𝑁𝐿)𝐴𝑏𝑃𝐷,0

In summary, the power,  (in ), absorbed from the laser beam is𝑊𝑎𝑏𝑠 𝑊

𝑊𝑎𝑏𝑠 = (1 ‒ 𝑒
‒ 𝛼𝑁𝐿)𝐴𝑏𝑃𝐷≅𝛼𝑁𝐿𝐴𝑏𝑃𝐷 = (𝑁𝑃,𝑏𝜎𝑃 + 𝜎𝑆,𝑏)𝑃𝐷

where  is the absorption coefficient (in ) of the nanofluid,  (in ) is the spot area,  𝛼𝑁 𝑚 ‒ 1 𝐴𝑏 𝑚2 𝑃𝐷

(in ) is the incident power density,  is the number of NPs exposed to the laser beam, 𝑊 𝑚 ‒ 2 𝑁𝑃,𝑏



Nanoscale

6

 is the absorption cross-section of one NP, and  is the absorption cross-section of the 𝜎𝑃 𝜎𝑆,𝑏

solvent within the laser beam.

V. Heat dissipation and power balance equation

The laser beam can be considered as a long excitation cylinder because the optical 

pathlength is much larger (ca. 100 times) than the diameter of the laser spot. So, the heat 

absorbed from the laser beam will be dissipated through the surface, , of the excitation 𝐴𝑐𝑠

cylinder.

Power dissipation via heat transfer

According to Fourier’s law of heat conduction,1 the rate of heat dissipation by conduction, 

 (in ), due to a temperature gradient is𝑊𝑐𝑜𝑛𝑑 𝑊

𝑊𝑐𝑜𝑛𝑑(𝑡) = 𝐴𝑐𝑠𝜅𝑚
∂𝑇(𝑟,𝑡)

∂𝑟

where  (in ) is the cross-sectional area of the heat flux,  (in ) is the thermal 𝐴𝑐𝑠 𝑚2 𝜅𝑚 𝑊 𝑚 ‒ 1 𝐾 ‒ 1

conductivity of the medium, and  is the temperature gradient. For a small temperature 
∂𝑇(𝑟,𝑡)

∂𝑟

difference, , between the excitation cylinder and the surrounding fluid, the differential ∆𝑇(𝑡)

form of the temperature gradient can be approximated by its finite difference form, namely,

∂𝑇(𝑟,𝑡)
∂𝑟

≅
𝑇(𝑡) ‒ 𝑇0

𝑟 ‒ 𝑟0
=

∆𝑇(𝑡)
∆𝑟

where  is a radial distance for which the temperature decreases from  to room ∆𝑟 𝑇(𝑡)

temperature  and spatial homogeneity was assumed. So, the rate of heat dissipation by 𝑇0

conduction becomes

𝑊𝑐𝑜𝑛𝑑(𝑡)≅𝐴𝑐𝑠𝜅𝑚
∆𝑇(𝑡)

∆𝑟
= 𝐴𝑐𝑠ℎ𝑐𝑜𝑛𝑑∆𝑇(𝑡),  ℎ𝑐𝑜𝑛𝑑 =

𝜅𝑚

∆𝑟
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where  (in ) is the thermal conduction coefficient and thermal conductivity  ℎ𝑐𝑜𝑛𝑑 𝑊 𝑚 ‒ 2 𝐾 ‒ 1 𝜅𝑚

was considered to be independent of the temperature.

A heated region can also cool-down via convection. According to Newton’s cooling law the 

convective heat dissipation, 1, by the laser heated nanofluid is𝑊𝑐𝑜𝑛𝑣(𝑡)

𝑊𝑐𝑜𝑛𝑣(𝑡) = 𝐴𝑐𝑠ℎ𝑐𝑜𝑛𝑣∆𝑇(𝑡)

where  (in ) is the convection heat transfer coefficient. A convection process ℎ𝑐𝑜𝑛𝑣 𝑊 𝑚 ‒ 2 𝐾 ‒ 1

can usually be classified as free, forced, and phase change (e.g. boiling or condensation).

The matter at a temperature above 0 K emits thermal radiation with an upper limit to its 

emissive power, , given by the Stefan-Boltzmann law,𝐸𝑏𝑏

𝐸𝑏𝑏 = 𝜎𝑆𝐵𝐴𝑐𝑠𝑇4

where  (in ) is the Stefan-Boltzmann constant,  (in ) is the cross-sectional 𝜎𝑆𝐵 𝑊 𝑚 ‒ 2 𝐾 ‒ 4 𝐴𝑐𝑠 𝑚2

area of the heat flux, and  is the temperature of the blackbody. For a body that is not a perfect 𝑇

emitter, its emissive power, , is𝐸𝑏

𝐸𝑏 = 𝜀𝜎𝑆𝐵𝐴𝑐𝑠𝑇4

where  the emissivity of the body. If the surroundings of this body are at a lower and 0 ≤ 𝜀 ≤ 1

constant temperature , then it behaves as an emitter at this temperature and by energy 𝑇0

conservation, this emitted thermal radiation is absorbed by the surface area, , of the body. 𝐴𝑐𝑠

As a result, there will be a net power dissipation, , from the heated region of the 𝑊𝑟𝑎𝑑(𝑡)

nanofluid given by

𝑊𝑟𝑎𝑑(𝑡) = 𝐸𝑏 ‒ 𝐸𝑎𝑏𝑠 = 𝜀𝜎𝑆𝐵𝐴𝑐𝑠𝑇4(𝑡) ‒ 𝜀𝜎𝑆𝐵𝐴𝑐𝑠𝑇4
0 = 𝜀𝜎𝑆𝐵𝐴𝑐𝑠[𝑇4(𝑡) ‒ 𝑇4

0]

This expression can be recast into

𝑊𝑟𝑎𝑑(𝑡) = ℎ𝑟𝑎𝑑𝐴𝑐𝑠∆𝑇(𝑡)

where the thermal radiation coefficient  (in ) can be expressed asℎ𝑟𝑎𝑑 𝑊 𝑚 ‒ 2 𝐾 ‒ 1

ℎ𝑟𝑎𝑑 = 𝜀𝜎𝑆𝐵[𝑇(𝑡) + 𝑇0][𝑇2(𝑡) + 𝑇2
0]
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because

[𝑇(𝑡) + 𝑇0][𝑇2(𝑡) + 𝑇2
0]∆𝑇(𝑡)

= [𝑇3(𝑡) + 𝑇(𝑡)𝑇2
0 + 𝑇2(𝑡)𝑇0 + 𝑇3

0][𝑇(𝑡) ‒ 𝑇0] = 𝑇4(𝑡) + 𝑇2(𝑡)𝑇2
0 + 𝑇3(𝑡)𝑇0 + 𝑇(𝑡)𝑇3

0 ‒ 𝑇3(𝑡)
𝑇0 ‒ 𝑇(𝑡)𝑇3

0 ‒ 𝑇2(𝑡)𝑇2
0 ‒ 𝑇4

0 = 𝑇4(𝑡) ‒ 𝑇4
0

At near room temperature  and a temperature increase , i.e. 𝑇0 = 300 𝐾 ∆𝑇 = 10 𝐾

, the thermal radiation coefficient  (in ) can𝑇(𝑡) = 310 𝐾 ℎ𝑟𝑎𝑑 𝑊 𝑚 ‒ 2 𝐾 ‒ 1

ℎ𝑟𝑎𝑑
= 𝜀𝜎𝑆𝐵[𝑇(𝑡) + 𝑇0][𝑇2(𝑡) + 𝑇2

0] = 𝜀(5.670374419 × 10 ‒ 8 𝑊 𝑚 ‒ 2 𝐾 ‒ 4)(1.13521 × 108 𝐾3) = 𝜀 × 6.437 
𝑊 𝑚 ‒ 2 𝐾 ‒ 1

It is noteworthy that all three contributions to the heat transfer dissipation have the same 

functional form, so they can be combined into a general expression for the power loss via heat 

transfer

𝑊ℎ𝑡(𝑡) = ℎℎ𝑡𝐴𝑐𝑠∆𝑇(𝑡)

where the heat transfer coefficient  (in ) is a combination of the conduction, ℎℎ𝑡 𝑊 𝑚 ‒ 2 𝐾 ‒ 1

convection and thermal radiation coefficients.

Power dissipation via upconversion emission

The UCNPs in the nanofluid absorb radiation from the laser at near-infrared wavelength and 

emit radiation in the visible region. This process will then decrease the amount of absorbed 

energy that is transformed into heat, so it will not contribute to the heating of the nanofluid 

and can be accounted as dissipated power.

The quantum yield, , of the UC processes is given by the ratio of the number of photons 𝜙𝑈𝐶

emitted, , to the number of photons absorbed, ,𝑁𝑒𝑚
𝑝ℎ  𝑁𝑎𝑏𝑠

𝑝ℎ

𝜙𝑈𝐶 =
𝑁𝑒𝑚

𝑝ℎ

𝑁𝑎𝑏𝑠
𝑝ℎ
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So, the emitted energy is , where  (in ) is the Planck constant and  𝐸𝑒𝑚 = 𝑁𝑒𝑚
𝑝ℎℎ𝜈𝑒𝑚 ℎ 𝐽 𝐻𝑧 ‒ 1 𝜈𝑒𝑚

(in ) is the frequency of the emission and similarly for the absorbed energy:  𝐻𝑧 𝐸𝑎𝑏𝑠 = 𝑁𝑎𝑏𝑠
𝑝ℎ ℎ𝜈𝑎𝑏𝑠

at frequency . As a result, the UC quantum yield becomes𝜈𝑎𝑏𝑠

𝜙𝑈𝐶 =
𝑁𝑒𝑚

𝑝ℎℎ𝜈𝑒𝑚

𝑁𝑎𝑏𝑠
𝑝ℎ ℎ𝜈𝑎𝑏𝑠

𝑐𝜈𝑎𝑏𝑠

𝑐𝜈𝑒𝑚
=

𝐸𝑒𝑚

𝐸𝑎𝑏𝑠

𝜈̃𝑎𝑏𝑠

𝜈̃𝑒𝑚

where  (in ) is the speed of light,  (in ) and  (in ) are the absorption and 𝑐 𝑐𝑚 𝑠 ‒ 1 𝜈̃𝑎𝑏𝑠 𝑐𝑚 ‒ 1 𝜈̃𝑒𝑚 𝑐𝑚 ‒ 1

emission wavenumbers. In a given time interval, :∆𝑡

𝜙𝑈𝐶 =
𝐸𝑒𝑚 ∆𝑡

𝐸𝑎𝑏𝑠 ∆𝑡

𝜈̃𝑎𝑏𝑠

𝜈̃𝑒𝑚
=

𝑊𝑈𝐶

𝑊𝑈𝐶,𝑎𝑏𝑠

𝜈̃𝑎𝑏𝑠

𝜈̃𝑒𝑚

where  is the radiative emitted power and  is the absorbed power during the UC 𝑊𝑈𝐶 𝑊𝑈𝐶,𝑎𝑏𝑠

process. Therefore,

𝑊𝑈𝐶 =
𝜈̃𝑒𝑚

𝜈̃𝑎𝑏𝑠
𝜙𝑈𝐶𝑊𝑈𝐶,𝑎𝑏𝑠 =

𝜈̃𝑒𝑚

𝜈̃𝑎𝑏𝑠
𝜙𝑈𝐶𝑁𝑃,𝑏𝜎𝑃𝑃𝐷

where  is the number of UCNPs within the laser beam and  is the absorption cross-section 𝑁𝑃,𝑏 𝜎𝑃

of the NPs.

For the uncapped and lipid bilayer-capped LiYF4:Yb3+/Er3+ UCNPs employed as the 

nanofluids, the ratio of the wavenumbers is  (two-photon upconversion) and the 𝜈̃𝑒𝑚 𝜈̃𝑎𝑏𝑠≅0.5

upconversion quantum yields for these UCNPs dispersed in water are (0.040±0.004)104 and 

(0.120±0.010)104, respectively. Therefore,

𝑊𝑈𝐶 ≲ 5 × 10 ‒ 5𝑁𝑃,𝑏𝜎𝑃𝑃𝐷

which results in,

𝑊𝑈𝐶

𝑊𝑎𝑏𝑠
~

5 × 10 ‒ 5𝑁𝑃,𝑏𝜎𝑃𝑃𝐷

(𝑁𝑃,𝑏𝜎𝑃 + 𝜎𝑆,𝑏)𝑃𝐷
≲ 10 ‒ 5
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Heat dissipation via increase of internal energy

Because the nanofluid within and surrounding the excitation cylinder of the laser beam has 

heat capacity, , it can store energy and the rate of energy storage or the rate of internal 𝑐𝑁

energy increase, , is𝑊𝑖𝑛𝑡(𝑡)

𝑊𝑖𝑛𝑡(𝑡) = 𝑚𝑁𝑐𝑁
𝑑𝑇(𝑡)

𝑑𝑡

where  (in ) is the mass of the nanofluid and  (in ) is the heat capacity of the 𝑚𝑁 𝑘𝑔 𝑐𝑁 𝐽 𝐾 ‒ 1 𝑘𝑔 ‒ 1

region where the temperature is increasing. Assuming that the species constituting the 

nanofluid are independent, its capacity to store heat can be separated into two contributions

𝑚𝑁𝑐𝑁 = 𝑚𝑃𝑐𝑃 + 𝑚𝑆𝑐𝑆

with  and  being the mass and heat capacity of the NPs,  and  the mass and heat 𝑚𝑃 𝑐𝑃 𝑚𝑆 𝑐𝑆

capacity of the solvent. Furthermore, when the NPs are capped by a lipid bilayer, then

𝑚𝑁𝑐𝑁 = 𝑚𝑃𝑐𝑃 + 𝑚𝑆𝑐𝑆 + 𝑚𝐿𝑐𝐿

where  and  are the mass and heat capacity of the lipid bilayer.𝑚𝐿 𝑐𝐿

Power balance equation

The power absorbed from the laser beam is converted into heat, so the power gained by 

the nanofluid within the excitation cylinder is . This heat is then completely 𝑊𝑔𝑎𝑖𝑛 = 𝑊𝑎𝑏𝑠

dissipated by the mechanisms discussed previously, so the power loss is approximated as 

. The power balance requires that the power gained be equal to 𝑊𝑙𝑜𝑠𝑠(𝑡)≅𝑊ℎ𝑡(𝑡) + 𝑊𝑈𝐶 + 𝑊𝑖𝑛𝑡(𝑡)

the power lost, so

𝑊𝑎𝑏𝑠 = ℎℎ𝑡𝐴𝑐𝑠∆𝑇(𝑡) + 𝑊𝑈𝐶 + 𝑚𝑁𝑐𝑁
𝑑𝑇(𝑡)

𝑑𝑡
= ℎℎ𝑡𝐴𝑐𝑠∆𝑇(𝑡) + 𝑊𝑈𝐶 + 𝑚𝑁𝑐𝑁

𝑑∆𝑇(𝑡)
𝑑𝑡

where the last equality is valid because

𝑑∆𝑇(𝑡)
𝑑𝑡

=
𝑑
𝑑𝑡

[𝑇(𝑡) ‒ 𝑇0] =
𝑑𝑇(𝑡)

𝑑𝑡

The balance equation can be rearranged into
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𝑊𝑎𝑏𝑠 ‒ 𝑊𝑈𝐶 = ℎℎ𝑡𝐴𝑐𝑠∆𝑇(𝑡) + 𝑚𝑁𝑐𝑁
𝑑∆𝑇(𝑡)

𝑑𝑡
→

𝑊𝑎𝑏𝑠 ‒ 𝑊𝑈𝐶

𝑚𝑁𝑐𝑁
=

ℎℎ𝑡𝐴𝑐𝑠

𝑚𝑁𝑐𝑁
∆𝑇(𝑡) +

𝑑∆𝑇(𝑡)
𝑑𝑡

or

𝐵 =
1
𝜏

∆𝑇(𝑡) +
𝑑∆𝑇(𝑡)

𝑑𝑡
,  𝐵 =

𝑊𝑎𝑏𝑠 ‒ 𝑊𝑈𝐶

𝑚𝑁𝑐𝑁
,  

1
𝜏

=
ℎℎ𝑡𝐴𝑐𝑠

𝑚𝑁𝑐𝑁

The solution of this differential equation is

∆𝑇(𝑡) = 𝐵𝜏(1 ‒ 𝑒 ‒ 𝑡/𝜏)

for the initial condition: .∆𝑇(0) = 0

Notice that as , the steady-state is achieved and the temperature  becomes 𝑡→∞ 𝑇(𝑡→∞) = 𝑇𝑠𝑠

the steady-state (constant) temperature and the temperature increase 

 is constant and given by∆𝑇(𝑡→∞) ≡ ∆𝑇𝑠𝑠 = 𝑇𝑠𝑠 ‒ 𝑇0

∆𝑇𝑠𝑠 = 𝑇𝑠𝑠 ‒ 𝑇0 = 𝐵𝜏 =
𝑊𝑎𝑏𝑠 ‒ 𝑊𝑈𝐶

𝑚𝑁𝑐𝑁

𝑚𝑁𝑐𝑁

ℎℎ𝑡𝐴𝑐𝑠
=

𝑊𝑎𝑏𝑠 ‒ 𝑊𝑈𝐶

ℎℎ𝑡𝐴𝑐𝑠
→ℎℎ𝑡𝐴𝑐𝑠 =

𝑊𝑎𝑏𝑠 ‒ 𝑊𝑈𝐶

∆𝑇𝑠𝑠

As a result,

∆𝑇(𝑡) = ∆𝑇𝑠𝑠(1 ‒ 𝑒 ‒ 𝑡/𝜏),  
1
𝜏

=
ℎℎ𝑡𝐴𝑐𝑠

𝑚𝑁𝑐𝑁
=

𝑊𝑎𝑏𝑠 ‒ 𝑊𝑈𝐶

𝑚𝑁𝑐𝑁∆𝑇𝑠𝑠
=

𝑊𝑎𝑏𝑠(1 ‒ 𝑊𝑈𝐶 𝑊𝑎𝑏𝑠)
𝑚𝑁𝑐𝑁∆𝑇𝑠𝑠

Using the approximated expression for the power absorption

𝑊𝑎𝑏𝑠≅(𝑁𝑃,𝑏𝜎𝑃 + 𝜎𝑆,𝑏)𝑃𝐷

the ratio in the numerator in the expression for  becomes1 𝜏

𝑊𝑈𝐶

𝑊𝑎𝑏𝑠
≅

0.015𝑁𝑃,𝑏𝜎𝑃𝑃𝐷

(𝑁𝑃,𝑏𝜎𝑃 + 𝜎𝑆,𝑏)𝑃𝐷
=

0.015𝑁𝑃,𝑏𝜎𝑃

𝑁𝑃,𝑏𝜎𝑃 + 𝜎𝑆,𝑏

which for water solution of UCNPs is

𝑊𝑈𝐶

𝑊𝑎𝑏𝑠
=

0.015 × 2.69 × 108 × 1.61 × 10 ‒ 19

2.69 × 108 × 1.61 × 10 ‒ 19 + 4.023 × 10 ‒ 9
=

6.50 × 10 ‒ 13

4.066 × 10 ‒ 9
= 1.60 × 10 ‒ 4

and for heavy water

𝑊𝑈𝐶

𝑊𝑎𝑏𝑠
=

0.015 × 2.69 × 108 × 1.61 × 10 ‒ 19

2.69 × 108 × 1.61 × 10 ‒ 19 + 0.114 × 10 ‒ 9
=

6.50 × 10 ‒ 13

1.57 × 10 ‒ 10
= 4.13 × 10 ‒ 3
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So, the approximations

1
𝜏

≅
𝑊𝑎𝑏𝑠

𝑚𝑁𝑐𝑁∆𝑇𝑠𝑠
,  ∆𝑇𝑠𝑠≅

𝑊𝑎𝑏𝑠

𝐴𝑐𝑠ℎℎ𝑡

are justified.

Comparison between conduction and thermal radiation heat flux dissipation.

The thermal conduction coefficients of water and dilute aqueous solutions are in the range 

of 500 to 900 , which for , gives a flux of heat of𝑊 𝑚 ‒ 2 𝐾 ‒ 1 ∆𝑇 = 10 𝐾

𝑊𝑐𝑜𝑛𝑑

𝐴𝑐𝑠
= ℎ𝑐𝑜𝑛𝑑∆𝑇≅(500 ‒ 900 𝑊 𝑚 ‒ 2 𝐾 ‒ 1)(10 𝐾)≅5000 ‒ 9000 𝑊 𝑚 ‒ 2

Near room temperature  and a temperature increase , i.e. , 𝑇0 = 300 𝐾 ∆𝑇 = 10 𝐾 𝑇(𝑡) = 310 𝐾

the flux of heat dissipation by thermal radiation can be estimated as

𝑊𝑟𝑎𝑑

𝐴𝑐𝑠
= 𝜀𝜎𝑆𝐵(𝑇4 ‒ 𝑇4

0)≅(5.67´10 ‒ 8 𝑊 𝑚 ‒ 2 𝐾 ‒ 4)(3104 ‒ 3004)≅64 𝑊 𝑚 ‒ 2

Thus, under the experimental conditions, the heat dissipation by thermal radiation is 

negligible compared to heat dissipation by conduction.

VI. Temperature variations within the excitation cylinder

It is relevant to determine how the temperature increase, , associated with absorption, ∆𝑇

varies across and along with the excitation cylinder of the laser beam. These variations of  ∆𝑇

will determine the accuracy and reliability of the derived properties as well as establish the 

temperature monitoring.

Temperature variation across a cylinder at steady-state

At steady-state, the energy stored due to heat capacity is constant, so the rate of internal 

energy variation is null. As discussed previously, the only source of heat dissipation is via 

conduction. In addition, at steady-state:  and . The heat 𝑇(𝑟,𝑡) = 𝑇(𝑟) 𝑄̇𝑐𝑜𝑛𝑑(𝑟,𝑡) = 𝑄̇𝑐𝑜𝑛𝑑(𝑟)
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generated within an inner excitation cylinder must be equal to the heat conducted through its 

outer surface. Assuming constant thermal conductivity, , conservation of energy 𝜅(𝑟,𝑇) = 𝜅

requires that

𝑄̇𝑐𝑜𝑛𝑑(𝑟) =‒ 𝜅𝐴𝑟
𝑑𝑇(𝑟)

𝑑𝑟
= 𝐸̇𝑔𝑒𝑛 = 𝑒̇𝑔𝑒𝑛𝑉𝑟

where  and  are the rate of energy and the rate of energy density generated within the 𝐸̇𝑔𝑒𝑛 𝑒̇𝑔𝑒𝑛

cylinder with a surface area  and volume , which gives𝐴𝑟 = 2𝜋𝑟𝐿 𝑉𝑟 = 𝜋𝑟2𝐿

‒ 𝜅(2𝜋𝑟𝐿)
𝑑𝑇(𝑟)

𝑑𝑟
= 𝑒̇𝑔𝑒𝑛(𝜋𝑟2𝐿)→

𝑑𝑇(𝑟)
𝑑𝑟

=‒
𝑒̇𝑔𝑒𝑛

2𝜅
𝑟

Separating the variables and integrating from  for which  to the surface 𝑟 = 0 𝑇(0) = 𝑇0

 where , then𝑟 = 𝑅𝑠 𝑇(𝑅𝑠) = 𝑇𝑠

𝑇𝑠

∫
𝑇0

𝑑𝑇 =‒
𝑒̇𝑔𝑒𝑛

2𝜅

𝑅𝑠

∫
0

𝑟𝑑𝑟→∆𝑇 = 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ‒ 𝑇𝑐𝑒𝑛𝑡𝑒𝑟 =‒
𝑒̇𝑔𝑒𝑛

2𝜅 �𝑟2

2 |𝑅𝑠
0 =‒

𝑒̇𝑔𝑒𝑛

4𝜅
𝑅2

𝑠

For heating with a laser beam with spot area, , and pathlength, , the rate of energy 𝐴𝑏 𝐿

density generation becomes . Considering that the power absorbed 𝑒̇𝑔𝑒𝑛 = 𝐸̇𝑔𝑒𝑛 𝑉𝑏 = 𝐸̇𝑔𝑒𝑛 (𝐴𝑏𝐿)

from the laser beam is converted in heat, then as shown previously, the rate of energy 

generation becomes , that is, , which gives the following temperature 𝑊𝑎𝑏𝑠 𝐸̇𝑔𝑒𝑛 =‒ 𝑊𝑎𝑏𝑠

variation across the laser beam

∆𝑇 = 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ‒ 𝑇𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑊𝑎𝑏𝑠

4𝜅𝐴𝑏𝐿
𝑅2

𝑠

Thus, with  and , the temperature variation across the laser beam is𝑅𝑠 = 𝑅𝑏 𝐴𝑏 = 𝜋𝑅2
𝑏

∆𝑇 = 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ‒ 𝑇𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑊𝑎𝑏𝑠

4𝜅𝜋𝑅2
𝑏𝐿

𝑅2
𝑏 =

𝑊𝑎𝑏𝑠

4𝜋𝜅𝐿
=

(1 ‒ 𝑒
‒ 𝛼𝑁𝐿)𝐴𝑏𝑃𝐷

4𝜋𝜅𝐿
≅

(𝑁𝑃,𝑏𝜎𝑃 + 𝜎𝑆)𝑃𝐷

4𝜋𝜅𝐿

This temperature variation can be estimated as

∆𝑇 =
(1 ‒ 𝑒 ‒ 𝛼𝐿)𝐴𝑏𝑃𝐷

4𝜋𝜅𝐿
=

(1 ‒ 𝑒 ‒ 0.502)(8.01 ∙ 10 ‒ 9 𝑚2)(1.50 × 106 𝑊 𝑚 ‒ 2)

4𝜋(0.615 𝑊 𝑚 ‒ 1 𝐾 ‒ 1)(10 ‒ 2 𝑚)
= 0.061 𝐾
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where typical values for water or dilute aqueous solutions were used, namely,  𝛼 = 0.502 𝑐𝑚 ‒ 1

(water at 980 nm), , ,  (water at 300 K), and 𝐿 = 1.00 𝑐𝑚 𝐴𝑏 = 8.01 ∙ 10 ‒ 9 𝑚2
𝜅 = 0.615 𝑊 𝑚 ‒ 1 𝐾 ‒ 1

. Therefore, the temperature can be considered uniform across the laser 𝑃𝐷 = 150 𝑊 𝑐𝑚 ‒ 2

beam.

Temperature variation along a cylinder defined by the laser beam

It was shown that the energy rate, , absorbed in an infinitesimal segment  is𝑑𝑊𝑎𝑏𝑠 𝑑𝑥

𝑑𝑊𝑎𝑏𝑠 = 𝛼𝑁𝑃𝐷𝑑𝑉𝑏 = 𝐴𝑏𝛼𝑁𝑃𝐷𝑑𝑥 = 𝐴𝑏𝛼𝑁𝑃𝐷,0𝑒
‒ 𝛼𝑁𝑥

𝑑𝑥

Thus, the absorbed power, , in a segment  of the optical path is𝑊𝑎𝑏𝑠(𝑥1,𝑥2) (𝑥1,𝑥2)

𝑊𝑎𝑏𝑠(𝑥1,𝑥2) = 𝐴𝑏𝛼𝑁𝑃𝐷,0

𝑥2

∫
𝑥1

𝑒
‒ 𝛼𝑁𝑥

𝑑𝑥 =‒ 𝐴𝑏𝑃𝐷,0�𝑒 ‒ 𝛼𝑁𝑥|𝑥2
𝑥1

= 𝐴𝑏𝑃𝐷,0(𝑒
‒ 𝛼𝑁𝑥1 ‒ 𝑒

‒ 𝛼𝑁𝑥2)

The power balance equation for this segment of absorbed energy rate requires that

𝑊𝑎𝑏𝑠(𝑥1,𝑥2) = 𝐴𝑏𝑃𝐷(𝑒
‒ 𝛼𝑁𝑥1 ‒ 𝑒

‒ 𝛼𝑁𝑥2) = 𝑚𝑐
𝑑𝑇(𝑡)

𝑑𝑡
+ ℎ𝑐𝑜𝑛𝑑𝐴1,2∆𝑇(𝑡)

where  is the mass,  is the heat capacity,  is the thermal conductivity coefficient (in 𝑚 𝑐 ℎ𝑐𝑜𝑛𝑑

), and  is the surface area of the cylinder segment  given by𝑊 𝑚 ‒ 2 𝐾 ‒ 1 𝐴1,2 (𝑥1,𝑥2)

𝐴1,2 = 2𝜋𝑅𝑏(𝑥2 ‒ 𝑥1)[1 +
𝑅𝑏

(𝑥2 ‒ 𝑥1)]
So,

𝑑∆𝑇(𝑡)
𝑑𝑡

+
ℎ𝑐𝑜𝑛𝑑𝐴1,2

𝑚𝑐
∆𝑇(𝑡) ‒

𝐴𝑏𝑃𝐷(𝑒
‒ 𝛼𝑁𝑥1 ‒ 𝑒

‒ 𝛼𝑁𝑥2)
𝑚𝑐

= 0

or

𝑑𝑦(𝑡)
𝑑𝑡

+
1

𝜏1,2
𝑦(𝑡) ‒ 𝐵1,2 = 0

where

1
𝜏1,2

=
ℎ𝑐𝑜𝑛𝑑𝐴1,2

𝑚𝑐
,  𝐵1,2 =

𝐴𝑏𝑃𝐷(𝑒
‒ 𝛼𝑁𝑥1 ‒ 𝑒

‒ 𝛼𝑁𝑥2)
𝑚𝑐
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The solution is

∆𝑇1,2(𝑡) = 𝐵1,2𝜏1,2(1 ‒ 𝑒
‒ 𝑡/𝜏1,2)

for the initial condition: . Similarly, for the interval cylinder segment .∆𝑇(0) = 0 (𝑥3,𝑥4)

Then,

∆𝑇1,2(𝑡)

∆𝑇3,4(𝑡)
=

𝐵1,2𝜏1,2(1 ‒ 𝑒
‒ 𝑡/𝜏1,2)

𝐵3,4𝜏3,4(1 ‒ 𝑒
‒ 𝑡/𝜏3,4)

In addition,

𝐵1,2

𝐵3,4
=

𝐴𝑏𝑃𝐷(𝑒
‒ 𝛼𝑁𝑥1 ‒ 𝑒

‒ 𝛼𝑁𝑥2)
𝑚𝑐

𝐴𝑏𝑃𝐷(𝑒
‒ 𝛼𝑁𝑥3 ‒ 𝑒

‒ 𝛼𝑁𝑥4)
𝑚𝑐

=
(𝑒

‒ 𝛼𝑁𝑥1 ‒ 𝑒
‒ 𝛼𝑁𝑥2)

(𝑒
‒ 𝛼𝑁𝑥3 ‒ 𝑒

‒ 𝛼𝑁𝑥4)

and

𝜏1,2

𝜏3,4
=

𝑚𝑐
ℎ𝑐𝑜𝑛𝑑𝐴1,2

𝑚𝑐
ℎ𝑐𝑜𝑛𝑑𝐴3,4

=
𝐴3,4

𝐴1,2

Choosing the same interval lengths, that is, , then , and the (𝑥2 ‒ 𝑥1) = (𝑥3 ‒ 𝑥4) 𝐴1,2 = 𝐴3,4

ratio of temperature increases becomes

∆𝑇1,2(𝑡)

∆𝑇3,4(𝑡)
=

𝐵1,2𝜏1,2(1 ‒ 𝑒
‒ 𝑡/𝜏1,2)

𝐵3,4𝜏3,4(1 ‒ 𝑒
‒ 𝑡/𝜏3,4)

=
(𝑒

‒ 𝛼𝑁𝑥1 ‒ 𝑒
‒ 𝛼𝑁𝑥2)

(𝑒
‒ 𝛼𝑁𝑥3 ‒ 𝑒

‒ 𝛼𝑁𝑥4)
(1 ‒ 𝑒

‒ 𝑡/𝜏1,2)
(1 ‒ 𝑒

‒ 𝑡/𝜏3,4)

In the first instants of the transient regime , so𝑡/𝜏 ≪ 1

1 ‒ 𝑒 ‒ 𝑡/𝜏 = 1 ‒ [1 ‒
𝑡
𝜏

+
1
2(𝑡

𝜏)2 ‒ ⋯]≅
𝑡
𝜏

then,

∆𝑇1,2(𝑡)

∆𝑇3,4(𝑡)
≅

(𝑒
‒ 𝛼𝑁𝑥1 ‒ 𝑒

‒ 𝛼𝑁𝑥2)
(𝑒

‒ 𝛼𝑁𝑥3 ‒ 𝑒
‒ 𝛼𝑁𝑥4)

𝑡/𝜏1,2

𝑡/𝜏3,4
≅

(𝑒
‒ 𝛼𝑁𝑥1 ‒ 𝑒

‒ 𝛼𝑁𝑥2)
(𝑒

‒ 𝛼𝑁𝑥3 ‒ 𝑒
‒ 𝛼𝑁𝑥4)

𝜏3,4

𝜏1,2
=

(𝑒
‒ 𝛼𝑁𝑥1 ‒ 𝑒

‒ 𝛼𝑁𝑥2)
(𝑒

‒ 𝛼𝑁𝑥3 ‒ 𝑒
‒ 𝛼𝑁𝑥4)

because the segments have the same areas, , so .𝐴1,2 = 𝐴3,4
𝜏3,4 𝜏1,2 = 1
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As , steady-state is achieved and the ratio between the temperature increase in each 𝑡→∞

segment is the same as that calculated for the first instants of the transient regime:

∆𝑇1,2(𝑡)

∆𝑇3,4(𝑡)
=

𝐵1,2𝜏1,2(1 ‒ 𝑒
‒ 𝑡/𝜏1,2)

𝐵3,4𝜏3,4(1 ‒ 𝑒
‒ 𝑡/𝜏3,4)

=
𝐵1,2𝜏1,2

𝐵3,4𝜏3,4
=

𝐵1,2

𝐵3,4
=

(𝑒
‒ 𝛼𝑁𝑥1 ‒ 𝑒

‒ 𝛼𝑁𝑥2)
(𝑒

‒ 𝛼𝑁𝑥3 ‒ 𝑒
‒ 𝛼𝑁𝑥4)

,  𝑡→∞

Thus, the ratio between the temperature increase in each segment at the first instants of 

the transient or steady-state regimes becomes independent of time:

∆𝑇1,2(𝑡)

∆𝑇3,4(𝑡)
≅

(𝑒
‒ 𝛼𝑁𝑥1 ‒ 𝑒

‒ 𝛼𝑁𝑥2)
(𝑒

‒ 𝛼𝑁𝑥3 ‒ 𝑒
‒ 𝛼𝑁𝑥4)

For , , , , and , then𝛼𝑁 = 0.50 𝑐𝑚 ‒ 1 𝑥1 = 0 𝑥2 = 0.1𝐿 = 0.1 𝑐𝑚 𝑥3 = 0.9𝐿 = 0.9 𝑐𝑚 𝑥4 = 𝐿 = 1 𝑐𝑚

∆𝑇1,2(𝑡)

∆𝑇3,4(𝑡)
≅

(𝑒 ‒ 0 ‒ 𝑒 ‒ 0.05)
(𝑒 ‒ 0.45 ‒ 𝑒 ‒ 0.50)

=
(1 ‒ 0.9512)

(0.6376 ‒ 0.6065)
=

0.0488
0.0311

= 1.57

This result indicates that the temperature increase, , in the last segment ( ) of ∆𝑇 0.9𝐿 ‒ 1.0𝐿

the optical pathlength becomes ca. 1.6 times smaller than that in the first segment ( ). 0 ‒ 0.1𝐿

Or, the temperature increase, , due to laser excitation decreases monotonically along the ∆𝑇

optical pathlength as shown in Figure S3.

Figure S3. Variation of the temperature increase, ∆T, due to laser excitation along the 

pathlength.
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Therefore, it is very important, for quantitative measurements, to ensure that the 

temperature is monitored at the same position along the cylinder defined by the laser beam 

for all samples. This is the main reason that temperature monitoring by ratiometric 

luminescence at each UCNP will not be addressed in these experiments. However, because 

the size of the thermocouple (ca. 1.5 mm = 0.15 cm) is small, there is a little variation (< 4%) 

of  cross the excitation cylinder of the laser beam, so  monitored by the thermocouple ∆𝑇 ∆𝑇

can be considered uniform.

Centering the thermocouple at the middle of the pathlength (e.g. ), using 0.5 𝑐𝑚

 and : , , and 𝛼𝑁 = 0.50 𝑐𝑚 ‒ 1
𝐿 = 1 𝑐𝑚 𝛼𝑁𝑥1 = 0.50 ∙ 0.425 = 0.2125 𝛼𝑁𝑥2 = 𝛼𝑁𝑥3 = 0.50 ∙ 0.5 = 0.25

, then𝛼𝑁𝑥4 = 0.50 ∙ 0.575 = 0.2875

∆𝑇1,2(𝑡)

∆𝑇3,4(𝑡)
≅

(𝑒 ‒ 0.2125 ‒ 𝑒 ‒ 0.25)
(𝑒 ‒ 0.25 ‒ 𝑒 ‒ 0.2875)

= 1.0382→3.82%
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VII. Analysis

The analysis of transient regime yields the following expression for the heat capacity, , 𝑐𝑁

of the nanofluid

𝑐𝑁 =
𝑊𝑎𝑏𝑠𝜏

∆𝑇𝑠𝑠𝑚𝑁
,  𝑊𝑎𝑏𝑠 = 𝜎𝑁𝑃𝐷 = (𝑁𝑃,𝑏𝜎𝑃 + 𝑁𝑃,𝑏𝜎𝐿 + 𝜎𝑆)𝑃𝐷

where the power absorbed, , from the laser beam can be determined from its power 𝑊𝑎𝑏𝑠

density, , and the absorption cross-section of the nanofluid, , 𝑃𝐷 𝜎𝑁 = 𝑁𝑃,𝑏𝜎𝑃 + 𝑁𝑃,𝑏𝜎𝐿 + 𝜎𝑆

whereas the temperature increase at the steady-state, , can be measured and the time ∆𝑇𝑠𝑠

associated with the transient regime, , can be determined by fitting the temperature increase 𝜏

with time. It is noteworthy that the determination of the heat capacity, , is independent of 𝑐𝑁

the thermal conduction coefficient, , and of the cross-sectional area of heat flux, .ℎ𝑐𝑜𝑛𝑑 𝐴𝑐𝑠

From the dependence of  on the laser power density, ,∆𝑇𝑠𝑠 𝑃𝐷

ℎℎ𝑡≅
𝑊𝑎𝑏𝑠

𝐴𝑐𝑠∆𝑇𝑠𝑠
,  𝑊𝑎𝑏𝑠 = 𝜎𝑁𝑃𝐷 = (𝑁𝑃,𝑏𝜎𝑃 + 𝑁𝑃,𝑏𝜎𝐿 + 𝜎𝑆)𝑃𝐷

it is possible to determine the conduction heat transfer coefficient, , using values of  and ℎℎ𝑡 𝜎𝑁

. As mentioned, under the experimental conditions, this heat transfer coefficient, , is 𝐴𝑐𝑠 ℎℎ𝑡

basically the conduction heat transfer coefficient, . As the thermal conductivity, , and ℎ𝑐𝑜𝑛𝑑 𝜅𝑚

 are related: , the values obtained for  with the present analysis agree with ℎ𝑐𝑜𝑛𝑑 𝜅𝑚 = ℎ𝑐𝑜𝑛𝑑∆𝑟 ℎ𝑐𝑜𝑛𝑑

the thermal conductivities previously reported.2 The only difference was that in this previous 

work the absorption of D2O was neglected compared to that of uncapped UCNPs.2 However, 

the contribution of D2O was to be taken into account because its absorption coefficient at 980 

nm (1.42 m‒1 3) is higher than those of capped (0.8180±0.0001 m‒1) and uncapped 

(0.5400±0.0001 m‒1) UCNPs.

The determination of  is straightforward and it is related to the thermal conduction ∆𝑇𝑠𝑠

properties of the nanofluid. However, care must be exercised in the determination of . For 𝜏
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instance, the direct fit of the curve  will be dominated by the steady-state ∆𝑇(𝑡) = ∆𝑇𝑠𝑠(1 ‒ 𝑒 ‒ 𝑡/𝜏)

region, so the time of temperature increase during the transient regime will not be properly 

adjusted, as can be observed in Figure S4a. Alternatively, this curve can be linearized as

𝜃(𝑡) ≡
∆𝑇(𝑡)
∆𝑇𝑠𝑠

= 1 ‒ 𝑒 ‒ 𝑡/𝜏→ln [1 ‒ 𝜃(𝑡)] =‒
1
𝜏

𝑡

so,  can be obtained from the inverse of the slope of the linear region of the plot  𝜏 ln [1 ‒ 𝜃(𝑡)]

vs. , as observed in Figure S4b. For pure water, the heat capacity can be determined as𝑡

𝑐𝐻2𝑂 =
𝜎𝐻2𝑂 𝑃𝐷 𝜏

∆𝑇𝑠𝑠 𝑚𝐻2𝑂

and presented in Table S1.

Table S1. Fitting parameters for pure water at several laser power densities.

 ( )𝑃𝐷 106 𝑊 𝑚 ‒ 2  ( )∆𝑇𝑠𝑠 ± 0.1 𝐾  (s)𝜏  ( )a)𝑐𝐻2𝑂 𝐽 𝑘𝑔 ‒ 1 𝐾 ‒ 1

1.49 5.1 0.28±0.02

1.97 6.8 0.29±0.02

2.22 8.2 0.31±0.01

4177±367

a) determined with  and .
𝜎𝐻2𝑂 = (4.023 ± 0.005) × 10 ‒ 9 𝑚2 𝑚𝐻2𝑂 = (7.99 ± 0.01) × 10 ‒ 8𝑘𝑔

The values of  were obtained from fitting the measured temperature increase in the first 𝜏

instants of the transient regime, that is, the linear region of the plot  vs. , as ln [1 ‒ 𝜃(𝑡)] 𝑡

illustrated in Figure S4b.
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Figure S4. (a) Temperature increase, , with time for pure water. (b) Temporal dependence ∆𝑇(𝑡)

of the logarithm of , where  is the reduced temperature .1 ‒ 𝜃(𝑡) 𝜃(𝑡) 𝜃(𝑡) = ∆𝑇(𝑡) ∆𝑇𝑠𝑠

VIII. Absorption spectroscopy

The absorption spectra were recorded three times at room temperature, using a dual-

beam spectrometer Lambda 950 (Perkin-Elmer) with a 150 mm diameter Spectralon 

integrating sphere over the range 200-1200 nm with a resolution of 1.0 nm. A baseline was 

recorded with two 10 mm path-length quartz cuvettes (2 polished windows) containing the 

reference fluid (H2O). The absorbance uncertainty (~10‒6) was estimated through the 

resolution of the device and the maximum deviation between the three measurements 

performed for the same sample. Following the equation for the absorption coefficient,  (in 𝛼

),𝑚 ‒ 1

𝛼 =
𝐴
𝐿

where  is the absorbance of the UCNPs at 980 nm using the solvent as the reference and  is 𝐴 𝐿

the optical pathlength ( ), the uncertainty in  is estimated as:0.0100 ± 0.0001 𝑚 𝛼

Δ𝛼 = (Δ𝐴
𝐿 )2 + ( 𝐴

𝐿2
Δ𝐿)2.

IX. Photoluminescence in the NIR spectral range
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Photoluminescence spectra in the NIR spectral range were measured using the 

Quantaurus-QY (C13534, Hamamatsu) system equipped with an integrating sphere as sample 

chamber and two multi-channel analyzers for signal detection in the visible and the NIR 

spectral ranges. A 980 nm external laser diode (FC-980 5W, CNI Lasers) was used as the 

excitation source (operating at 2.4 W, corresponding to PD=950 W·cm2, considering the 

illumination area in the sample holder, 0.0025 cm2, according to the manufacturer). The 

emission spectra of the UCNPs upon 980 nm excitation display the 2H11/2,4S3/24I15/2 (green 

spectral region) and 4F9/24I15/2 (red spectral region) Er3+ transitions, Figure S5.

Figure S5. Emission spectra of the (a) uncapped and (b) lipid bilayer-capped LiYF4:Yb3+/Er3+ 
UCNPs dispersed in H2O recorded between 450 and 1600 nm upon 980 nm excitation. The Er3+ 
emission in the near-infrared spectral region is not detected indicating that the 980 nm 
excitation is essentially converted in upconversion emission and, thus, the Er3+ downshifting 
emission is negligible.
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X. Supplementary Tables

Table S2. Properties of uncapped LiYF4:Er3+/Yb3+ UCNPs and lipid bilayer capped 
LiYF4:Er3+/Yb3+ UCNPs.

Quantity Value Units

Average molar mass (LiYF4:Er 0.6%/Yb 29%), 𝑀𝑃 0.19671  𝑘𝑔·𝑚𝑜𝑙 ‒ 1

Size of long diagonal, 𝑑𝑙 86.4±9.5 nm 

Size of small diagonal, 𝑑𝑠 52.2±5.3 nm 

Volume of one UCNP, 𝑉𝑃 3.92±1.2  10 ‒ 23 𝑚3

Density of undoped LiYF4, 
𝜌𝐿𝑖𝑌𝐹4 3995±54  𝑘𝑔·𝑚 ‒ 3

U
nc

ap
pe

d 
U

CN
Ps

Mass of one UCNP, 𝑚𝑃 1.79±0.6  10 ‒ 19 𝑘𝑔
Average molar mass lipid bilayer capped UCNP

(Oleate 20%: DOPA 51%: DOPC 5%: Chol 24%), 𝑀𝑐𝑃
0.58167  𝑘𝑔·𝑚𝑜𝑙 ‒ 1

Thickness of lipid bilayer 4.40±0.405 nm 

Mass of one lipid bilayer, 𝑚𝐿 0.53 ±0.08  10 ‒ 19 𝑘𝑔

Mass of one lipid bilayer-UCNP composite, 𝑚𝑐𝑃 2.32 ±0.64  10 ‒ 19 𝑘𝑔Ca
pp

ed
 U

CN
Ps

Volume one lipid bilayer-UCNP composite, 𝑉𝑐𝑃 4.85±1.51  10 ‒ 23 𝑚3

Table S3. Properties of the nanofluids. Uncapped UCNPs = UCNPs and lipid bilayer-UCNP = c-
UCNPs.
Quantity Value Units

Concentration of UCNPs, , and c-UCNPs, 𝐶𝑃 𝐶𝑐𝑃 0.6  𝑔·𝐿 ‒ 1

Number density of UCNPs, 𝑁𝑃 3.35±1.05

Number density of c-UCNPs, 𝑁𝑐𝑃 2.59±0.72
1018 𝑁𝑃𝑠 𝑚 ‒ 3

 

Number of UCNPs exposed to the laser beam, 𝑁𝑃,𝑏 2.69±0.85

Number of c-UCNPs exposed to the laser beam, 𝑁𝑐𝑃,𝑏 2.07±0.58
 108

Absorption coefficient of UCNPs, 𝛼𝑃 0.540±0.005  𝑚 ‒ 1

Absorption coefficient of c-UCNPs, 𝛼𝑐𝑃 0.818±0.009  𝑚 ‒ 1

Absorption cross-section of UCNP, 𝜎𝑃 1.61±0.52

Absorption cross-section of lipid bilayer, 𝜎𝐿 1.55±0.35

Absorption cross-section of c-UCNP, 𝜎𝑐𝑃 3.16±0.82

 10 ‒ 19·𝑚2
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Table S4. Properties of the solvents at 298 K.

Parameter H2O D2O Units

Molar mass, 𝑀𝑆 0.018015 0.02003  𝑘𝑔·𝑚𝑜𝑙 ‒ 1

Mass density, 𝜌𝑆 9976 11047  𝑘𝑔·𝑚 ‒ 3

Absorption coefficient, 𝛼𝑆 50.28 1.423  𝑚 ‒ 1

Absorption cross-section within the laser beam 4.023±0.005 0.114±0.001  10 ‒ 9 𝑚2

Table S5. Physical parameters of the experimental set-up.

Parameter Value Units

Wavelength 980 10-9 m 

Cuvette pathlength, 𝐿 10.0±0.1 ×10-3 m

Laser beam spot area, 𝐴𝑏 8.01±0.012  10 ‒ 9 𝑚2

Cross-sectional area, 𝐴𝑐𝑠 3.19±0.05  10 ‒ 6 𝑚2

Table S6. Fitting parameters for the uncapped LiYF4:Er3+/Yb3+ UCNPs dispersed in D2O for 
several laser power densities.

 ( )𝑃𝐷 106 𝑊·𝑚 ‒ 2  ( )∆𝑇𝑠𝑠 ± 0.1 𝐾  (s)𝜏  ( ) a)𝑐𝑃 𝐽·𝑘𝑔 ‒ 1·𝐾 ‒ 1

1.25 1.5 2.88±0.23

2.22 3.9 4.21±0.39
709±93

a) determined with , , 
𝜎𝐷2𝑂 = (0.114 ± 0.001) × 10 ‒ 9 𝑚2

𝜎𝑃 = (1.61 ± 0.52) × 10 ‒ 19 𝑚2

, , , and 𝑁𝑃,𝑏 = (2.69 ± 0.85) × 108 𝑚𝐷2𝑂 = (8.87 ± 0.01) × 10 ‒ 8 𝑘𝑔 𝑐𝐷2𝑂 = 4219 𝐽 𝑘𝑔 ‒ 1 𝐾 ‒ 1

.𝑚𝑃 = (4.81 ± 2.14) × 10 ‒ 11 𝑘𝑔

𝑐𝑁 =
𝑊𝑎𝑏𝑠𝜏

∆𝑇𝑠𝑠𝑚𝑁
,  𝑊𝑎𝑏𝑠 = 𝜎𝑁𝑃𝐷 = (𝑁𝑃,𝑏𝜎𝑃 + 𝑁𝑃,𝑏𝜎𝐿 + 𝜎𝑆)𝑃𝐷

𝑊𝑎𝑏𝑠 = (2.69 × 108 × 1.61 × 10 ‒ 19 + 0.114 × 10 ‒ 9)𝑃𝐷 = 1.573 × 10 ‒ 10𝑃𝐷

Table S7. Fitting parameters for the uncapped LiYF4:Er3+/Yb3+ UCNPs dispersed in H2O for 
several laser power densities.

 ( )𝑃𝐷 106 𝑊·𝑚 ‒ 2  ( )∆𝑇𝑠𝑠 ± 0.1 𝐾  (s)𝜏  ( ) a)𝑐𝑃 𝐽·𝑘𝑔 ‒ 1·𝐾 ‒ 1

1.25 5.0 0.33±0.02

1.49 7.1 0.39±0.01

1.97 7.9 0.33±0.01

2.22 13.8 0.51±0.03

715±57
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a) determined with , , 
𝜎𝐻2𝑂 = (4.023 ± 0.005) × 10 ‒ 9 𝑚2

𝜎𝑃 = (1.61 ± 0.52) × 10 ‒ 19 𝑚2

, ,  9, and 𝑁𝑃,𝑏 = (2.69 ± 0.85) × 108 𝑚𝐻2𝑂 = (7.99 ± 0.01) × 10 ‒ 8 𝑘𝑔 𝑐𝐻2𝑂 = 4184 𝐽 𝑘𝑔 ‒ 1 𝐾 ‒ 1

.𝑚𝑃 = (4.81 ± 2.14) × 10 ‒ 11𝑘𝑔
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Table S8. Fitting parameters for the lipid bilayer capped LiYF4:Er3+/Yb3+ UCNPs dispersed in 
H2O for several power densities.

 ( )𝑃𝐷 106 𝑊·𝑚 ‒ 2  ( )∆𝑇𝑠𝑠 ± 0.1 𝐾  (s)𝜏  ( ) a)𝑐𝐿 𝐽·𝑘𝑔 ‒ 1·𝐾 ‒ 1

0.67 3.6 0.44±0.01

0.95 4.9 0.42±0.01

1.25 5.2 0.34±0.02

1.49 9.7 0.54±0.03

1.97 10.9 0.46±0.02

2.22 16.2 0.60±0.03

5039±211

a) determined with , , 
𝜎𝐻2𝑂 = (4.023 ± 0.005) × 10 ‒ 9 𝑚2

𝜎𝑐𝑃 = (3.16 ± 0.82) × 10 ‒ 19 𝑚2

, , 9, 𝑁𝑐𝑃,𝑏 = (2.07 ± 0.58) × 108 𝑚𝐻2𝑂 = (7.99 ± 0.01) × 10 ‒ 8 𝑘𝑔 𝑐𝐻2𝑂 = 4184 𝐽·𝑘𝑔 ‒ 1·𝐾 ‒ 1

, , and 𝑚𝑃 = (3.71 ± 1.56) × 10 ‒ 11 𝑘𝑔 𝑐𝑃 = (715 ± 57) 𝐽·𝑘𝑔 ‒ 1·𝐾 ‒ 1

.𝑚𝐿 = (1.10 ± 0.47) × 10 ‒ 11 𝑘𝑔
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