Electronic Supplementary Information (ESI)

Interfacial hybridization of Janus MoSSe and BX (X= P, As) monolayers for ultrathin excitonic solar cell, nanopiezotronics and low-power memory devices

Manish Kumar Mohanta and Abir De Sarkar*

Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India

*E-mail: abir@inst.ac.in; abirdesarkar@gmail.com

Formalism:

Mechanical constants: 2D layer modulus: $\gamma^{2D} = \frac{1}{2} [C_{11} + C_{12}]$ (1)

Young's modulus $(\Upsilon) = \frac{C_{11}^2 - C_{12}^2}{C_{11}}$ (2) Poisson ratio $(\nu) = C_{12}/C_{11}$ (3) Shear modulus $(G) = C_{66}$ (4) Intrinsic strength $\sigma_{int} \sim \frac{\Upsilon}{9}$ (5) Bending modulus $D = \frac{\Upsilon h^2}{12(1-\nu^2)}$ (6),

(6), where *h* is the thickness of the nanosheet (~ 7.35Å)

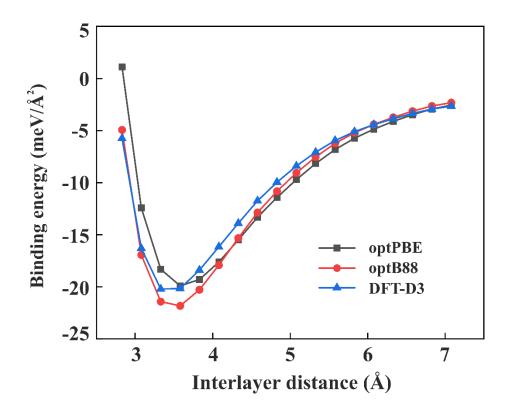


Figure S1. Interlayer distance vs binding energy curve of BP/MoSSe using different van der Waals correction

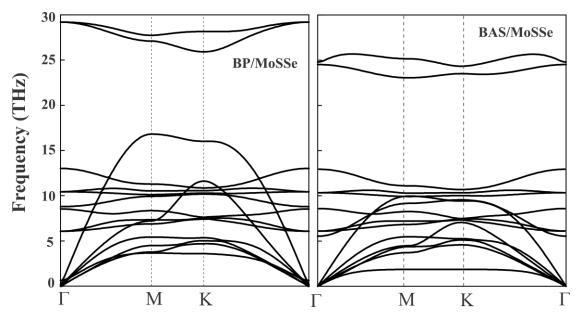


Figure S2. Phonon dispersion curve of BX/MoSSe vdWHs.

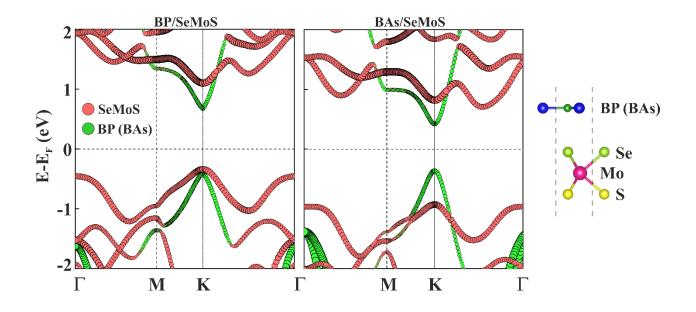


Figure S3. Electronic band structure of BP(BAs)/SeMoS heterostructure calculated using GGA-PBE

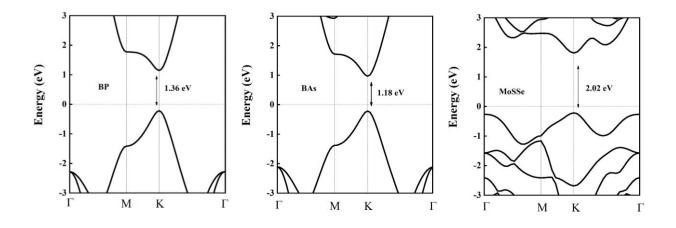


Figure S4. The electronic band structure of individual monolayers calculated using HSE06.

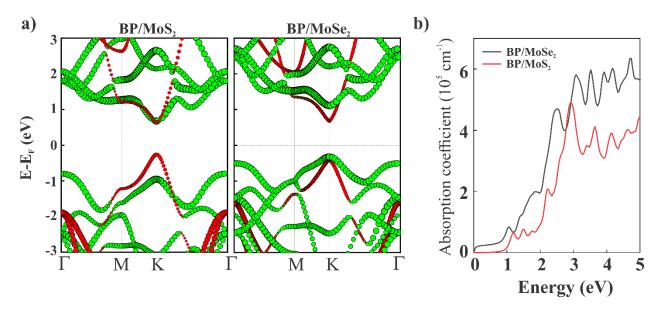


Figure S5. Electronic band structure of BP/MoS $_2$ and BP/MoS $_2$ vdWH and their absorption coefficient

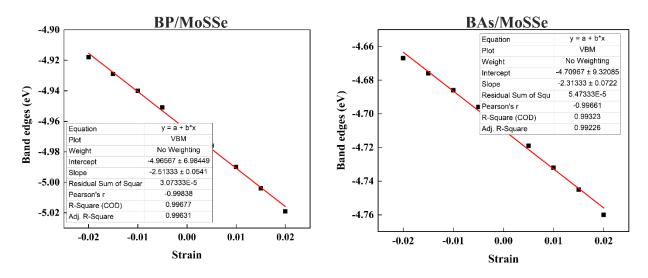


Figure S6. Deformation potential of holes calculated for BX/MoSSe vdWH

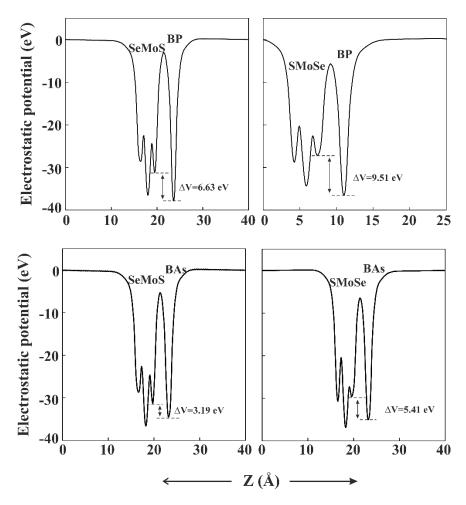


Figure S7. Electrostatic potential energy profile of different vdWHs.

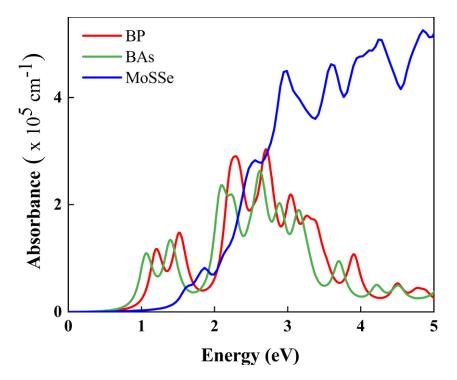


Figure S8. The optical absorption spectra of monolayers.

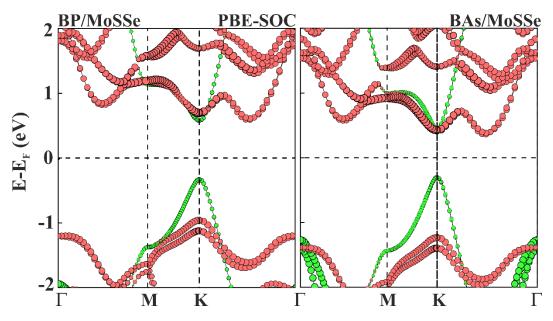


Figure S9. The electronic band structure of BX/MoSSe including SOC

					oiezoelectric 1 and BAs/Mo			
	e _{ij}				C _{ij}			
BP/MoSSe								
	1	2	3		1	2	3	
1	-0.00134	-0.00108	0.00012	1	70.67	17.95	0.21	
2	0.0349	-0.03354	-0.0001	2	17.95	69.8	-0.29	
3	-0.01104	-0.01104	-0.01583	3	0.216	-0.293	1.06	
			BAs/N	AoSSe				
	1	2	3		1	2	3	
1	0.00738	0.00053	0.00096	1	66.245	15.60	-0.088	
2	0.04618	-0.05079	-0.0006	2	15.60	66.36	-0.152	
3	-0.00021	-0.00022	-0.01086	3	-0.0885	-0.152	1.423	

Note that the total elastic modulus C_{ij} is calculated with a high dense k-mesh of $16 \times 16 \times 1$ and higher energy cut-off of 700 eV, as suggested by VASP. The piezoelectric coefficients (d_{21}) of BP, BAs have been calculated¹ to be 1.81 pm/V and 2.3 pm/V respectively which are in excellent agreement with other reports.²

References:

1 M. K. Mohanta, Dimple, A. Rawat, N. Jena, R. Ahammed and A. D. Sarkar, *Physica E: Low-dimensional Systems and Nanostructures*, 2020, **124**, 114222.
2 L. Shi, C. Han, X. Wang and S. Xun, *Physica B: Condensed Matter*, 2010, **574**, 311634.

2J. Shi, C. Han, X. Wang and S. Yun, Physica B: Condensed Matter, 2019, 574, 311634.