Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Interfacial hybridization of Janus MoSSe and BX (X= P, As) monolayers for ultrathin excitonic solar cell, nanopiezotronics and low-power memory devices

Manish Kumar Mohanta and Abir De Sarkar*

Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab-160062, India

*E-mail: abir@inst.ac.in; abirdesarkar@gmail.com

Formalism:

Mechanical constants: 2D layer modulu	$\gamma^{2D} = \frac{1}{2} [C_{11} + C_{12}] $ (1)
$(\Upsilon) = \frac{C_{11}^2 - C_{12}^2}{C_{11}}$	
Young's modulus	(2)
Poisson ratio $(v) = C_{12}/C_{11}$	(3)
Shear modulus $(G) = C_{66}$	(4)
Intrinsic strength $\sigma_{int} \sim \frac{\Upsilon}{9}$	(5)
$D = \frac{\Upsilon h^2}{12(1 - \nu^2)}$ Bending modulus 7.35Å)	(6), where h is the thickness of the nanosheet (~

Figure S1. Interlayer distance vs binding energy curve of BP/MoSSe using different van der Waals correction

Figure S2. Phonon dispersion curve of BX/MoSSe vdWHs.

Figure S3. Electronic band structure of BP(BAs)/SeMoS heterostructure calculated using GGA-PBE

Figure S4. The electronic band structure of individual monolayers calculated using HSE06.

Figure S5. Electronic band structure of BP/MoS₂ and BP/MoSe₂ vdWH and their absorption coefficient

Figure S6. Deformation potential of holes calculated for BX/MoSSe vdWH

Figure S7. Electrostatic potential energy profile of different vdWHs.

Figure S8. The optical absorption spectra of monolayers.

Figure S9. The electronic band structure of BX/MoSSe including SOC

Table-S1 Calculated relaxed ion (Electronic + Ionic) piezoelectric tensor e_{ij} (unit: C/m ²)								
and total elastic modulus ${}^{C}{}_{ij}$ (unit: GPa) of BP/MoSSe and BAs/MoSSe heterobilayer								
e _{ij}			C _{ij}					
BP/MoSSe								
	1	2	3		1	2	3	
1	-0.00134	-0.00108	0.00012	1	70.67	17.95	0.21	
2	0.0349	-0.03354	-0.0001	2	17.95	69.8	-0.29	
3	-0.01104	-0.01104	-0.01583	3	0.216	-0.293	1.06	
BAs/MoSSe								
	1	2	3		1	2	3	
1	0.00738	0.00053	0.00096	1	66.245	15.60	-0.088	
2	0.04618	-0.05079	-0.0006	2	15.60	66.36	-0.152	
3	-0.00021	-0.00022	-0.01086	3	-0.0885	-0.152	1.423	

Note that the total elastic modulus C_{ij} is calculated with a high dense k-mesh of $16 \times 16 \times 1$ and higher energy cut-off of 700 eV, as suggested by VASP. The piezoelectric coefficients (d_{21}) of BP, BAs have been calculated¹ to be 1.81 pm/V and 2.3 pm/V respectively which are in excellent agreement with other reports.²

References:

1 M. K. Mohanta, Dimple, A. Rawat, N. Jena, R. Ahammed and A. D. Sarkar, *Physica E: Low-dimensional Systems and Nanostructures*, 2020, **124**, 114222.

2J. Shi, C. Han, X. Wang and S. Yun, Physica B: Condensed Matter, 2019, 574, 311634.