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Note 1: Micromagnetic simulation results.

Figure S1 presents simulation results for the nanodisk with R = 150 nm. The resonance

frequencies f(H) increase almost linearly with increasing magnetic field, see Figure S1(a).

The frequency separation between the neighboring resonances amounts to about 4.5 GHz, as

is illustrated in Figure S1(b) for H = 9 kOe which is very close to the resonance field for the

third mode in the experiment. We have also checked that the micromagnetic simulations

nicely reproduce the profiles of the spin-wave amplitude described by the zeroth-order Bessel

functions in the analytical theory. For instance, if one takes a look at the fifth resonance

mode, from the spatial profile of the spin-wave amplitude in Figure S1(c) follows that the

involved spin wave length λ ' 65 nm and such spin waves are in the dipole-exchange regime.

At yet higher frequencies (and larger magnetic fields), higher excitation modes in the smallest

nanodisks are represented by exchange-dominated spin waves.
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Figure S1: Simulation results for the nanodisk with R = 150nm.
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Figure S1. (a) Simulated dependences of the resonance frequencies on the magnetic field for the

first five resonance modes for the disk with R = 150 nm. (b) Simulated spin-wave spectrum for

the nanodisk with R = 150 nm at 9 kOe. Inset: Spatial dependence of the standing spin-wave

amplitude for the fifth mode (n = 5) in the nanodisk. (c) Radial profile of the spin-wave

amplitude for n = 5.

Animation 1: Simulation results for the nanodisk with R = 300nm.

The animation illustrates the results of computer simulations using MuMax3 for the nanodisk

with R = 300 nm. The upper (static) panel in the animation shows the simulated spin-wave

resonance spectrum at an applied magnetic field of 15 kOe. The lower (animated) panel

depicts the coordinate dependence of the spin-wave amplitude for the forth mode (n = 4)

at 11.13 GHz.
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