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Figure S1. Electric field lines calculated by Particle-in-Cell for plasmons (PIC), by the boundary element 
method (BEM) and by the finite-difference time-domain (FDTD) method. The same Au nanorod was 
simulated, with length 100 nm and width 20 nm. In PIC and FDTD, the nanorod is excited at its 
resonance frequency for 10 fs, then allowed to dampen out. In FDTD, the dielectric function of Au is 
taken from the Drude’s plasma model with the plasma frequency 𝜔௣ = 1.377 × 10ଵ଺ 𝑟𝑎𝑑/𝑠 and 𝛾 =

7.143 × 10ଵଷ 𝑟𝑎𝑑/𝑠. The FDTD map is smaller due to the smaller monitor size set. In BEM, the 
nanorod is simulated with the Au dielectric function from Johnson and Christy1. For all maps, the 𝐸௫ 
and 𝐸௬ field are plotted on the 𝑧 = 0 plane of symmetry. The PIC and FDTD maps are plotted during 
damping after excitation has ended. The BEM map is plotted from the imaginary part of 𝐸௫ and 𝐸௬. 

 

 

Figure S2. Time-dependent energy components without subtraction of the laser field, integrated over 
all simulation box. Insets are the same plots with zoomed-in y-axis. 

 

                                                           
1 P. B. Johnson and R. W. Christy, Phys. Rev. B, 1972, 6, 4370. 
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Figure S3. Benchmarking the kinetic energy gained for different excitation field strengths. The electric 
field amplitude of the laser at the center of the nanorod was set as 740 MV/m (gray), 670 MV/m (blue) 
and 370 MV/m (red). First, the blue and red plot show similar behaviour and a similar oscillation cycle 
pattern during damping.  For better comparison, the latter is magnified (orange) by the ratio between 
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Figure S4. Extracting the kinetic induction energy from the total kinetic energy gain. The kinetic 
induction energy curve (blue) was obtained by extracting the oscillation part of the total kinetic energy 
gain (full black) from the baseline (dashed black). The inset shows that the total kinetic energy gain 
was obtained from the total kinetic energy by subtracting a straight line fitted before excitation 
(dashed grey line).  
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Figure S5. Time-dependent energy components and calculation of the population relaxation time 𝑇ଵ 
and dephasing time 𝑇ଶ for the no-collisions and with-collisions cases. (a, b) Time dependent kinetic 
energy gain, electric energy, magnetic energy and cumulative radiative energy in collisionless (a) and 
collisional (b) case. The total kinetic gain was obtained as ∆𝐾𝐸 = 𝐾𝐸(𝑡) − 𝐾𝐸(0), then subtracted 
with a straight line to compensate for the self-heating effect of PIC obtained from initial redistribution2 
(see Movie M1). Electric and magnetic energy are integrated in a 60×200×60 nm3

 box surrounding the 
nanorod. The cumulative radiative energy is taken as the time-space integration of Poynting vectors 
on a sphere 𝑟 = 500 𝑛𝑚 from the center of the rod, corresponding to the instantaneous radiative 
power in Figure 2c. (c,d) Calculation of the population relaxation time 𝑇ଵ by fitting the time-dependent 
magnetic energy with the damped harmonic oscillator model for the collisionless (c) and collisional (d) 
case. The fitting function is 𝑦 = 𝐴𝑒ି௧/ భ் + 𝐵. The magnetic energy is selected for deriving the 
dephasing time as it shows the clearest signal, while the kinetic energy and potential energy include 
noise from hot electrons that interferes with the oscillation amplitude. The dephasing time is then 
calculated via 𝑇ଶ = 2𝑇ଵ as explained in the main text and consolidated in Figure 3a. 

 

                                                           
2 P. Y. Lai, T. Y. Lin, Y. R. Lin-Liu, S. H. Chen, Physics of Plasmas, 2014, 21, 122111  
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Figure S6. The scattering spectra shown as insets in Figure 3(c) are calculated by integrating the real part of 
Poynting vector in the frequency domain 𝑺(𝜔) 500 nm away from the nanorod. 𝑺(𝜔)~𝑬(𝜔) × 𝑩∗(𝜔) with 𝑬(𝜔) 
and 𝑩(𝜔) obtained from the Fourier transform of 𝑬(𝑡) and 𝑩(𝑡) during plasmon damping from 𝑡 = 18 to 𝑡 = 50 
fs. These scattering spectra show a mismatch in the resonance frequency; both are plotted in the left panel. This is 
probably due to the interaction between the transverse oscillation and longitudinal oscillation in the collisionless 
case in Figure 3c. The effect is less significant with increasing aspect ratio, as shown in the right panel for the near-
field spectrum of a 400 nm long nanorod. Both rods are excited with a 10-fs laser pulse at 1.7 eV. The near-field 
spectra are taken after excitation has ended. For the 400 nm long nanorod, two bright modes can be observed both 
for collisional and collisionless case, at about 0.6 eV for the dipole mode and at 1.6 eV for the quadrupole mode, 
while n = 5 and n = 7 are suppressed in the collisional case. The mismatch is not significant for the first resonance 
peak, but increases with the harmonic order of the mode. At higher harmonic mode, the oscillation length of the 
plasmon bunches gets more localised, making the effect of mean free path more significant.  

However, it should be noted that this binary collision model is designed for plasmas. Therefore, further 
optimization of the collision rate (or Coulomb log3) is required for more realistic models. Here, we use 
the Coulomb log = 2, calculated from the density and temperature of the electron plasma based on 
the approach by Nanbu and Yonemura4.  

From the formulation by Lee and More5 using the non-degenerate limit, the electron-electron collision 
relaxation time can be estimated as:  

𝜏 =
3

4

√𝑚

√2𝜋

(𝑘𝑇)ଷ/ଶ

(𝑍∗)ଶ𝑛𝑒ସ𝑙𝑛Λ
 (𝑐𝑔𝑠) ≈ 0.04𝑓𝑠 

with 𝑘𝑇~𝐸ி = 5.53 𝑒𝑉, 𝑛 = 5.9 × 10ଶ଼𝑚ିଷ, 𝑍∗ = 1 and 𝑙𝑛Λ = 2 obtained from the simulation. 

Future studies revealing the effect of electron dynamics on the spectral response of plasmons using 
PIC will be valuable. 

 

                                                           
3 F. Pérez, L. Gremillet, A. Decoster, M. Drouin and E. Lefebvre, Phys. Plasmas, 2012, 19, 083104. 
4 K. Nanbu, S. Yonemura, J. Comput. Phys., 1998, 145, 2, 639-654. 
5 Y. T. Lee and R. M. More, Phys. Fluids., 1984, 27, 1273. 
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Figure S7. In the collisionless case, we can estimate the mean free path of the electrons due to surface 
scattering by tracking the deflection angle of the electron trajectory. Left: an example of scattering 
events detection by detecting peaks in the deflection angle curve (blue curve) after a low-pass filter 
(orange curve) and peak detection (blue circles) using the Scipy6 package. The mean free path of each 
particle is calculated from the distance travelled between two consecutive scattering events. In this 
way, the mean free path of 754/1000 sampled particles was calculated. Right: a histogram of the mean 
free path of the sampled particles, giving an average mean free path of 20.26 nm. 

 

 

Figure S8. Electron temperature estimated from the electron energy distribution with Fermi-Dirac 
statistics. To quantitatively extract further information from the electron energy distribution in Figure 
3b, we attempt to estimate the temperature of the electron gas before and after plasmon damping 
by fitting the electron energy distribution with the Fermi-Dirac model: 

𝑁(𝐸) = 𝑔(𝐸)𝑓(𝐸), where 𝑔(𝐸) is the parabolic density of state, 𝑓(𝐸) =
௔

௘
ಶషಶಷ

ೖ೅ ାଵ

 is the probability 

based on Fermi-Dirac statistics, 𝑎, 𝐸ி and 𝑘𝑇 are the fitting parameters. The fitted line of 𝑓(𝐸) is 
plotted in blue before (left) and after (right) excitation, corresponding to Figure 3b-I and Figure 3b-IV. 
There are two reasons for the surprisingly high electron temperatures. The first reason is the self-
evolving electron energy distribution due to the initialisation as visualised in Movie M1. Secondly, 

                                                           
6 https://www.scipy.org/ 
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electron-phonon interaction is not included in this simulation as the timescale of such interaction is in 
picoseconds7, which is much larger than the plasmon decay time considered in this study. The increase 
in electron gas temperature after plasmon damping is comparable with previous estimations by 
Saavedra et al. (2016)8 through the temperature-dependent electron occupancies, guaranteeing 
energy conservation during electron-electron scattering. 

 

 

Figure S9. Nanorod dimer excited by an electron beam. The PIC method is not limited to single 
particles, but can also be used to simulate more complex structures, such as nanorod dimers. Here, 
two nanorods with the same geometry as Figure 2a are placed 10 nm apart. The system is excited by 
a fast-moving charge Q = -1000e moving at 𝑣 =  0.5𝑐 in the x-direction, 4 nm off the top end of the 
upper nanorod as described earlier9. Center panel: a Fourier transform of the near field shows two 
resonance peaks, at 1.52 eV and at 2.01 eV, corresponding to two oscillation modes depicted in the 
left and right maps, respectively. The maps show the spatial distribution of the electric field strength 
at resonance frequencies by taking the real part of 𝐸௫(𝜔, 𝑧 = 0 ) and 𝐸௬(𝜔, 𝑧 = 0 ) on the z-plane of 
symmetry. The spectrum is calculated from 𝐵௭(𝜔, 𝑧 = 0). 

 

 

  

                                                           
7 J. -Y. Bigot, V. Halté, J. -C. Merle, A. Daunois, Chem. Phys., 2000, 251, 1-3, 181-203. 
8 J. R. M. Saavedra, Asenjo-Garcia A., de Abajo F. J. G., ACS Photonics, 2016, 3, 9, 1637-1646.  
9 W. J. Ding, J. Z. J. Lim, H. T. B. Do, X. Xiong, Z. Mahfoud, C. E. Png, M. Bosman, L. K. Ang and L. Wu, 
Nanophotonics, 2020, 9, 3303-3313.  
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Description of the Supplementary Movies 

 

Movie M1. Self-evolving electron energy distribution from Fermi-Dirac initial momentum distribution 
at Fermi energy 5.53 eV. The system is started as neutrally charged with electrons and ions at 
identical positions but self-evolves as the electrons spill outside of the ions boundary. Within 
a few femtoseconds, the system stabilizes, resulting in thermalisation and deviation from the 
initial distribution. The issue may be solved in future work with initialising electrons at 
equilibrium density distribution obtained by solving for a self-consistent potential with Fermi-
Dirac distribution as shown in 1D for the Vlasov simulation10. Because of the non-equilibrium 
initialisation, we start the laser excitation after about 40 fs, when the initial redistribution has almost 
stabilised.  

Movie M2. 𝑣௬ distribution from t = 16.9 fs to t = 20.2 fs during plasmon oscillation. The Fermi velocity 
is 1.4 × 10଺ 𝑚/𝑠. 

Movie M3. Difference between the 𝑣௬ distribution and the average distribution from t = 16.9 fs to t = 
20.2 fs during plasmon oscillation. The average distribution is the mean of all calculated distributions 
from t = 18.6 fs to t = 19.9 fs. 

Movie M4. 1000 random electrons in phase space (collisionless plasma). 

Movie M5. 1000 random electrons in real space on the x-y plane (collisionless plasma). 

Movie M6. 1000 random electrons in real space in 3D (collisionless plasma). 

Movie M7. Poynting vectors on 𝑧 =  0. 

Movie M8. Distribution of the electron kinetic energy during excitation and damping (collisionless 
plasma). 

Movie M9. Tracking two sampled electrons scattering at the surface. The color bar represents the 
kinetic energy of the particles normalised to the Fermi energy. The grey stream plot and black arrows 
represent the electric field lines and momentum in x-y plane, respectively. The solid black curve marks 
the position of ion background surface. Both particles participate in the oscillation until they reach the 
surface around t = 18 fs. 

Movie M10. Tracking a few electrons mainly traveling in y-direction on the x-y plane before surface 
scattering. The color bar represents the kinetic energy of the particles normalised to the Fermi energy. 
The solid black curve marks the position of the ion background surface. 

 

                                                           
10 G. Manfredi and P.-A. Hervieux,. Phys. Rev. B, 2004, 70, 201402(R)  
 


