1 Unravelling the Reactivity of Metastable Molybdenum Carbide Nanoclusters

2 in C-H Bond Activation of Methane, Ethane and Ethylene

- 3
- 4 Sonit Balyan^{a,b}, Shikha Saini^c, Tuhin S. Khan^{d*}, K. K. Pant^b, Puneet Gupta^{e*}, Saswata
- 5 Bhattacharyac* and M. Ali Haidera*
- 6 ^a Renewable Energy and Chemicals Lab, Department of Chemical Engineering, Indian Institute
- 7 of Technology Delhi, Hauz Khas, New Delhi, India
- 8 ^bCatalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of
- 9 Technology Delhi, Hauz Khas, New Delhi, India
- 10 ° Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
- 11 ^d Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- 12 ^eComputational Catalysis Center, Department of Chemistry, Indian Institute of Technology
- 13 Roorkee, Roorkee, Uttarakhand, India
- 14 Corresponding authors email addresses: tuhins.khan@iip.res.in, puneet.gupta@cy.iitr.ac.in,
- 15 saswata@physics.iitd.ac.in, haider@iitd.ac.in
- 16 17 18 19 20 21 22

Minimal	[He] + 2s 2p	[Kr] + 5s 4p 4d
Tier 1	H(2p,1.7)	H(4f,8.4)
	H(3d,6.0)	H(3d,2.8)
	H(2s,4.9)	I(5p)
		H(5g,12.0)
		I(5s)
Tier 2	H(4f,9.8)	H(4f,12.4)
	H(3p,5.2)	H(3d,3.3)
	H(3s,4.3)	H(6h,17.2)
	H(3d,6.2)	H(4f,7.6)
		H(3p,3.0) H(1s,0.65)

23 Table S1. Radial functions as considered for tight setting of basis set for C, and Mo in cGA.

Here, the first line (minimal) represents the free-atom radial functions (noble-gas configuration of the core and quantum numbers of the additional valence radial functions). "H(nl,z)" is the hydrogen-like basis function for the bare Coulomb potential (z/r) that includes its radial and angular momentum quantum numbers, *n* and *l*. I(nl) is a n,l radial function of a free ion of species Mo.

Bond length,	Å	Bond angle, deg	ree	Atom	X	Y	Z
Mo ⁽¹⁾ -Mo ⁽²⁾	2.65	$C^{(1)}-Mo^{(1)}-C^{(1)}$	89	Мо	-0.0029	0.4573	0.1725
Mo ⁽¹⁾ -C ⁽¹⁾	1.88	$Mo^{(1)}-Mo^{(2)}-C^{(1)}$	45	Mo	1.7880	0.5994	2.2251
Mo ⁽¹⁾ -C ⁽¹¹⁾	1.94	$C^{(11)}-Mo^{(1)}-C^{(1)}$	103	C	1.0825	1.8174	0.9356
$C^{(11)}-C^{(111)},$	1.31	$Mo^{(1)}-Mo^{(2)}-C^{(11)}$	99	C	0.7790	-0.7828	1.3819
$C^{(111)}-C^{(111)}$							
				C	-1.6235	0.8237	1.2068
				С	-1.5691	1.0342	2.4819
			С	-0.8530	1.1268	3.5666	
				С	0.4472	0.9827	3.5739

30 Table S2. Geometry of Mo₂C₆, Nanocluster 1.

Bond length	,Å	Bond angle, deg	ree	Atom	X	Y	Z
Mo ⁽¹⁾ -Mo ⁽²⁾	2.58	$C^{(1)}-Mo^{(1)}-C^{(111)},$	90	Mo	1.2723	-0.2657	-0.1394
		$Mo^{(1)}-Mo^{(2)}-C^{(V1)}$					
Mo ⁽¹⁾ -C ⁽¹⁾	1.95	$C^{(1)}-Mo^{(1)}-C^{(111)}$	96	C	1.4393	1.7211	-0.3956
$Mo^{(1)}-C^{(11)}$	2.00	$C^{(1V)}-Mo^{(1)}-Mo^{(2)}$	91	C	0.4965	-1.0265	1.48709
$Mo^{(1)}-C^{(111)}$	2.14	$C^{(1)}-Mo^{(2)}-Mo^{(1)}$	49	C	-1.9567	-0.4760	-0.0885
$Mo^{(1)}-C^{(1V)}$	1.92	$C^{(1)}-Mo^{(1)}-Mo^{(2)}$	46	Mo	-0.8295	0.2640	1.2689
$Mo^{(2)}-C^{(1)}$	1.86	$C^{(111)}-Mo^{(2)}-Mo^{(1)}$	54	C	0.1933	-1.0140	-1.5425
Mo ⁽²⁾ -C ⁽¹¹¹⁾	2.01	C ⁽¹¹¹⁾ -Mo ⁽¹⁾ -Mo ⁽²⁾	50	С	-0.9478	-0.8110	-0.9015
Mo ⁽²⁾ -C ^(V1)	1.90	$C^{(111)}-Mo^{(1)}-C^{(11)},$	37	С	0.3325	1.6083	0.3116
		$C^{(111)}-Mo^{(1)}-C^{(11)}$					
C ⁽¹¹⁾ -C ⁽¹¹¹⁾	1.31	$C^{(11)}-Mo^{(1)}-C^{(1)},$	121				
C ^(1V) -C ^(V)	1.32	$C^{(1V)}-Mo^{(1)}-C^{(2)}$	110				
C ^(V) -C ^(V1)	1.34	$C^{(1V)}-Mo^{(1)}-C^{(111)},$	104				
		$C^{(1V)}-Mo^{(2)}-C^{(11)}$					
		$C^{(V1)}-Mo^{(2)}-C^{(111)},$	105				
		$C^{(1V)}-Mo^{(1)}-C^{(111)}$					
		$Mo^{(2)}-Mo^{(1)}-C^{(11)}$	86				

Table S3. Geometry of Mo_2C_6 , Nanocluster **2.**

Table S4. Geometry of Mo_2C_6 , Nanocluster **3.**

Bond length, Å		Bond angle, degree		Atom	Х	Y	Ζ
$Mo^{(1)}-Mo^{(2)}$	2.37	$C^{(1)}-Mo^{(1)}-C^{(1)}$	92	Mo	-0.7815	-0.7815	0.1086
$Mo^{(1)}-C^{(1)}$	1.90	$C^{(11)}$ -Mo ⁽¹⁾ -C ⁽¹⁾	120	Mo	0.8679	-1.3208	1.3181
$Mo^{(1)}-C^{(11)}$	2.10	$Mo^{(1)}-Mo^{(2)}-C^{(1)}$	52	С	-0.8813	1.8560	0.8366
$C^{(11)}$ - $C^{(111)}$	1.27	$Mo^{(1)}-Mo^{(2)}-C^{(11)}$	110	C	1.7396	-0.0507	2.7587
$C^{(111)}-C^{(1V)}$	1.35			С	0.0337	1.5653	1.6655
				С	0.9766	0.8794	2.3569
				С	-1.0141	-1.5815	1.3015
				С	1.3015	-0.8175	-0.5141

Bond length, Å Bond angle, degree)	Atom	X	Y	Z	
Mo ⁽¹⁾ -Mo ⁽²⁾	2.68	$C^{(1)}-Mo^{(1)}-Mo^{(2)}$	119	Mo	1.5689	-1.4269	0.8050
Mo ⁽¹⁾ -C ⁽¹⁾	1.97	$C^{(1)}-Mo^{(1)}-C^{(111')}$	120	Mo	-	-1.1393	-0.2518
					0.8851		
Mo ⁽¹⁾ -C ⁽¹¹⁾	2.05	$C^{(1)}-Mo^{(1)}-C^{(11)}$	39	C	-	-0.6356	0.9382
					2.3817		
Mo ⁽¹⁾ -C ⁽¹¹¹⁾	2.01	$C^{(1)}-Mo^{(1)}-C^{(111)}$	78	C	-	-1.8352	1.5238
					0.2424		
Mo ⁽¹⁾ -	2.0	$C^{(11)}-Mo^{(1)}-C^{(111)}$	40	C	1.6544	0.5949	0.5155
C ^(111')							
C ⁽¹⁾ -C ⁽¹¹⁾	1.34	$C^{(11)}-Mo^{(1)}-C^{(111')}$	107	C	-	-1.2483	1.7056
					1.4647		
C ⁽¹¹⁾ -C ⁽¹¹¹⁾	1.37	$C^{(11)}$ -Mo ⁽¹⁾ -Mo ⁽²⁾	83	C	0.7322	0.0201	-0.3155
		$C^{(111)}-Mo^{(1)}-C^{(111')}$	88	C	2.5203	0.1798	1.4551
		C ⁽¹¹¹⁾ -Mo ⁽¹⁾ -Mo ⁽²⁾	48				

Table S5. Geometry of Mo_2C_6 , Nanocluster 4.

Table S6. Geometry of Mo_2C_6 , Nanocluster **5.**

Bond length	Å,	Bond angle, degree		Atom	X	Y	Z
Mo ⁽¹⁾ -	2.24	C ⁽¹⁾ -Mo ⁽¹⁾ -C ⁽¹¹⁾	37	Мо	-0.5856	1.1176	-0.9092
Mo ⁽¹¹⁾							
$Mo^{(1)}-C^{(1)}$	2.08	$C^{(1)}-Mo^{(1)}-C^{(111)}$	133	C	1.3777	1.4868	-1.2440
$Mo^{(1)}-C^{(11)}$	2.04	$C^{(1)}-Mo^{(1)}-C^{(1V)}$	114	C	1.4229	-0.1130	0.8581
Mo ⁽¹⁾ -C ⁽¹¹¹⁾	2.10	$C^{(1)}-Mo^{(1)}-Mo^{(2)}$	57	C	-2.1169	-1.4947	-0.1321
Mo ⁽¹⁾ -C ^(1V)	2.25	$C^{(1)}-Mo^{(2)}-Mo^{(1)}$	58	Мо	-0.8441	-0.2389	0.8573
Mo ⁽²⁾ -C ⁽¹⁾	2.06	$C^{(11)}-Mo^{(1)}-C^{(111)}$	123	C	-1.6955	-0.6188	-1.0131
Mo ⁽²⁾ -C ^(V)	2.23	$C^{(11)}-Mo^{(1)}-C^{(1V)}$	130	С	1.5042	0.7215	-0.2036
Mo ⁽²⁾ -C ^(V1)	2.02	$C^{(11)}-Mo^{(1)}-Mo^{(2)}$	94	C	0.9372	-0.8604	1.7867
C ⁽¹⁾ -C ⁽¹¹⁾	1.31	$C^{(111)}-Mo^{(1)}-C^{(1V)}$	34				
$C^{(111)}-C^{(1V)}$	1.29	C ⁽¹¹¹⁾ -Mo ⁽¹⁾ -Mo ⁽²⁾	116				
$C^{(1V)}-C^{(V)}$	1.35	$C^{(1V)}-Mo^{(1)}-Mo^{(2)}$	82				
$C^{(V)}-C^{(V1)}$	1.30	$C^{(V)}-Mo^{(2)}-Mo^{(1)}$	75				
		$C^{(V)}-Mo^{(2)}-C^{(1)}$	111				
		$C^{(V)}-Mo^{(2)}-C^{(V1)}$	35				
		$C^{(V1)}-Mo^{(2)}-Mo^{(1)}$	110]			
		$C^{(V1)}-Mo^{(2)}-C^{(1)}$	131				

Cluster	Activation energy, kJ/mol
Nanocluster 1	127.4
Nanocluster 2	67.7
Nanocluster 3	94.6
Nanocluster 4	125
Nanocluster 5	90.7

Table S7. Comparison of activation energy of methane C-H bond activation over different 48 Mo_2C_6 nanocluster.

- 50 Table S8. Comparison of activation energies calculated for methane dehydrogenation over
- 51 different sites on the metastable Mo_2C_6 nanocluster 2.

Activation site	Activation energy, kJ/mol
Mo ⁽¹⁾ -C ⁽¹⁾	67.7
Mo ⁽¹⁾ -C ⁽¹¹⁾	92.3
Mo ⁽²⁾ -C ⁽¹⁾	120.1
Mo ⁽²⁾ -C ⁽¹¹¹⁾	144.1

Figure S1. Histogram showing the number of Mo_2C_6 structures scanned in the cGA search in 57 the energy span of 600 kJ/mol starting with the lowest energy structure used as reference.

60 Figure S2. Variations in the energy of the nanoclusters in iterative search on the potential energy

- 63 Figure S3. Isomers of structures of Mo_2C_6 nanoclusters obtained from the cGA search in energy
- 64 span window of 50 kJ/mol with respect to the reference lowest energy nanocluster.

Figure S4. Structure of Mo₂C₆ nanocluster with atom numbering labels for geometries in Table S2-6.

- 73 Figure S5. Energy diagram showing the fluxionality between the lowest energy (nanocluster 1)
- 74 and metastable (nanocluster **2**) forms of Mo_2C_6 via an intermediate structure.

79 Figure S6. Reactant, transition and product state structures for methane dehydrogenation over

- 80 the $Mo^{(1)}-C^{(11)}$ site of nanocluster **2** (bond lengths in angstrom).

84

Figure S7. Reactant, transition and product state structures for methane dehydrogenation over
the Mo⁽²⁾-C⁽¹⁾site of nanocluster 2 (bond lengths in angstrom).

Figure S8. Reactant, transition and product state structures for methane dehydrogenation over 90 the $Mo^{(2)}$ -C⁽¹¹¹⁾ site of nanocluster 2 (bond lengths in angstrom).

Figure S9. Geometry of reactant, transition and product state structures for $C_2H_5^*$ 93 dehydrogenation over the Mo⁽¹⁾-C⁽¹¹⁾ site of nanocluster **2** (bond lengths in angstrom).

Figure S10. Geometry of reactant, transition and product state structures for $C_2H_3^*$ 97 dehydrogenation over the Mo⁽¹⁾-C⁽¹¹⁾ site of nanocluster **2** (bond lengths in angstrom).

Figure S11. BEP relationships plotted for C-H activation in methane, ethane and ethylene over the lowest energy nanocluster 1 (open symbols) and metastable nanocluster 2 (filled symbol) using the (i) RPBE functional with fixed nanocluster coordinate, (ii) RPBE functional with relaxed nanocluster coordinate and (iii) B3LYP functional with relaxed nanocluster coordinate.

104

Figure S12. Reactant, transition and product state structures for methane dehydrogenation reaction over the $Mo^{(1)}-C^{(1)}$ site of lowest energy nanocluster **1** for (i) constrained and (ii) unconstrained structure (bond lengths are shown in angstrom).