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Abstract

Light fusion increases the efficiency of solar cells by converting photons with lower

energy than the bandgap into higher energy photons. The solar cell converts the product

photons to current. We use Monte Carlo simulation to predict that lead sulfide quantum

dot sensitizers will enable fusion with a figure of merit on the mAcm−2 scale, exceeding

current records, while enabling silicon cell compatibility. Performance is highly sensitive

to quantum dot size, on the order of mAcm−2 nm−1.

1 Supplementary Calculations

The behavior of triplet fusion can be summarized by the well-known differential equation:2

d[T ]

dt
= kφ[S]− k1[T ]− k2[T ]

2 = 0 (1)
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Figure 1: Energy level diagram for light fusion. To be efficient, each process must be
exothermic.1 Sn indicates the emitter molecule’s nth singlet state. T1 indicates the first
triplet state.
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Where t is time, [T ] is the concentration of triplet excitons, kφ is the sensitizer excitation rate,

[S] is the sensitizer concentration, k1 is the decay rate for noninteracting triplet excitons,

and k2 is the annihilation rate constant for triplet excitons. The k2[T ]
2 term produces the

upconversion. This equation qualitatively explains Figs. 2–5. Figures 2 and 3 show the

calculated performance of quantum dot sensitizers when paired with emitters having various

properties. Fig. 4 is calculated as a function of illumination conditions. Fig. 5 addresses

quantum dot concentration. Collectively, these figures show that a high (>1mAcm−2) figure

of merit can be achieved over a wide range of device types.

Fig. 6 demonstrates that an insufficiently accurate model of the solar spectral irradiance

should not be used to inform device design.

In our source for quantum dot molar absorptivity, the quantum dot dispersity is at most

10%.3 Higher dispersity will reduce the degree to which the figure of merit depends on the

quantum dot size. For optimally sized quantum dots, dispersity slightly decreases the figure

of merit slightly, as shown in Fig. 7. This is an example of regression towards the mean. We

define dispersity as the width of a rectangular distribution of radii centered at 2.2 nm.

In each supplementary figure, the thickness of the device is variable as a function of the

horizontal axis. The thickness was selected to produce the highest figure of merit.4 The

quantum dot radius is 2.2 nm. The quantum dot concentration is 0.1mM, except in Fig. 5.

2 Toxicity

Toxicity is a concern for technologies that may be mass produced. We estimate a lead sulfide

density of 6 gm−2. The LC50 toxicity metric of bulk lead sulfide in the fish Pimephales

promelas is 0.9mg L−1.20 We did not locate mammalian toxicity data or any data for PbSe.

The ratio of density to LC50 is 7m of water, which indicates that careful device disposal is

required. For PbS nanomaterials, surface passivation may substantially reduce toxicity.21,22
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Figure 2: Figure of merit of quantum dot sensitized light fusion as a function of the decay
rate for noninteracting triplet excitons. The decay rate is a property of the emitter.5,6 The
decay rate can be as low as 90 s−1.7–9 It can be increased by adding traps1,7 such as oxygen
molecules.
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Figure 3: Figure of merit of quantum dot sensitized light fusion as a function of the anni-
hilation rate constant for triplet excitons. The constant is a property of the emitter. The
annihilation rate constant varies from 10−14 cm3 s−1 to 10−9 cm3 s−1.4,10,11
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Figure 4: Figure of merit of quantum dot sensitized light fusion as a function of the solar
irradiance. The irradiance is measured before the solar cell, not at the sensitizer. 1 kWm−2

is the conventional value. The transition from linear to quadratic behavior12–15 happens near
Ith =0.2 kWm−2. Quadratic behavior indicates the quantum yield is at a maximum. To the
best of our knowledge, the lowest Ith reported is 0.09 kWm−2,16 but this is for monochromatic
illumination in a silicon-incompatible device.
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Figure 5: Figure of merit of quantum dot sensitized light fusion as a function of the quantum
dot concentration.17,18 The absorbance of the quantum dot at the lowest energy absorption
peak is also indicated. A higher concentration results in a higher figure of merit.
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Figure 6: Figure of merit of quantum dot sensitized light fusion as a function of the quantum
dot radius. The black curve is the same as main text Fig. 3. The green curve is the same
calculation, except the solar spectrum is replaced by a 5778K blackbody spectrum.19 The
irradiance is held constant at 1 kW cm−2. The attenuation by the earth’s atmosphere is the
main reason the solar spectrum is redder than a blackbody. The blackbody approximation
fails to capture the full importance of the quantum dot radius.
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Figure 7: Molar absorption coefficient of quantum dots and figure of merit as a function of
the dispersity of the quantum dot radius.
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