Towards the Identification of the Gold Binding Region within Trypsin Stabilized Nanoclusters using Microwave Synthesis Routes

Mark H. Griep[†], Michael S. Sellers[†], Bijil Subhash[‡], Alexis M. Fakner[†], Abby L. West[†], Nicholas M. Bedford^{‡*}

[†] Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

[‡]School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia

*Corresponding author: <u>n.bedford@unsw.edu</u>

Supporting Information Figures

- Figure S1. Fluorescent emission of BSA, lysozyme etc PNC
- Figure S2. CD of BSA, lysozyme, etc PNC
- Figure S3. k^2 -space Au PNC data
- Figure S4. EXAFS modelling fits
- Figure S5. Atomic PDF at 30 Å
- Figure S6. 4-NP reduction data for standard trypsin Au PNC
- Table S1. Summary of synchrotron characterization results on Au PNCs.

Figure S1. Fluorescence data for standard and microwave PNCs using A) BSA; B) Pepsin, and C) lysozyme as protein models.

Figure S2. CD spectra for native proteins, standard and microwave PNCs using A) BSA; B) Pepsin, and C) lysozyme as protein models.

Figure S3. Au L₃-edge k^2 -space EXAFS for a reference Au foil (blue line), standard trypsin Au PNC (red line) and microwave trypsin Au PNC

Figure S4. EXAFS fitting for standard trypsin Au PNCs in A) k^2 -space, B) r-space and C) the real component of r-space and fitting for microwave-assisted Au PNCs in D) k^2 -space, E) r-space and F) the real component of r-space.

Figure S5. Atomic PDFs for Au PNCs and Au NP up to 30 Å.

Figure S6. 4-NP reduction rate constant vs temperature for the standard trypsin Au PNCs.

Cluster	Stabilizing	Form	Temperature	Au-	Au-	1 st	1 st	Reference
Size	Agent		(K)	ligand	ligand	Au-	Au-	
				CN	NND	Au	Au	
					(Å)	CN	NND	
							(Å)	
25 (est)	Trypsin	Aqueous	RT	2.04 ±	2.317 ±	1.15	2.79	This work
	(traditional			0.28	0.005	±	±	
	synthesis)					0.42	0.05	
25 (est)	Trypsin	Aqueous	RT	1.92 ±	2.309 ±	1.46	2.78	This work
	(microwave			0.14	0.005	±	±	
	synthesis)					0.36	0.03	
25	PhC ₂ H ₄ SH	Solid	RT	1.0	2.32	1.0	2.82	28
25	PhC ₂ H ₄ SH	Solid	10	1.0	2.32	1.0	2.80	28
25	PhC ₂ H ₄ SH	Toluene	RT	1.0	2.33	1.0	2.79	28
25	PhC ₂ H ₄ SH	ACN	RT	1.0	2.32	1.0	2.79	28
25	SC ₂ H ₄ Ph	Solid	8	1.6 (2)	2.319	1.5	2.700	34
					(4)	(4)	(4)	
38	SC ₂ H ₄ Ph	Solid	8	1.2 (2)	2.315	2.8	2.788	34
					(4)	(4)	(1)	
144	SC ₂ H ₄ Ph	Solid	8	0.9 (2)	2.326	1.2	2.733	34
					(8)	(5)	(9)	
25	SC ₈ H ₉	Solid (on	RT	1.34	2.313	1.44	2.75	35
		Al ₂ O ₃)		(0.1)	(5)		(2)	
25 (est)	BSA	Solid	RT	1.2 (1)	2.30	3.0	2.81	29
					(1)	(4)	(1)	
144	SC ₂ H ₄ Ph	Solid	RT	2.340	0.83	2.831	7.0	27
				(3)	(6)	(2)	(4)	
30	SC ₂ H ₄ Ph	Solid	90	1.2	2.32	2.07	2.77	36
					(1)		(3)	
30	SC ₂ H ₄ Ph	Solid	RT	1.2	2.311	2.07	2.69	36
					(4)		(2)	
30	SC ₂ H ₄ Ph	Aqueous	RT	1.2	2.297	2.07	2.69	36
					(7)		(2)	

Table S1. A summary of Au NC EXAFS data reported in the literature as comparted to those reported in this work.