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1. Detailed derivation of the nonlinear detour phase method

We consider a general χ(2) hologram composed of series of basic units. The basic units have the same 

number of antiparallel ferroelectric domains, but the arrangement of these domains is different for each 

unit. The coordinates of the (n, m)-th basic unit can be written as (nδν, mδν), where δν is the width and 

height of the basic unit. We consider the width and height of the inverted domains as cδν and Wnmδν, and 

the surrounding area is filled with the -χ(2) domains. The inverted domain is displaced from the center of 

the basic unit (nδν, mδν) by Pnmδν. We illuminate the χ(2) hologram with a normal incident 

monochromatic plane wave with homogeneous amplitude. For the SHG process, the SHG emitted from 

the positive and negative χ(2) areas has the same amplitude but a phase difference of π, which imposes a 

binary phase modulation onto the generated second harmonic light. Therefore, the emitted total second 

harmonic electric field, h(νx, νy), considered as the superposition of the second harmonic electric fields, 

hnm(νxnm, νynm), emitted from each basic unit, can be written as:
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where, νxnm= νx - nδν; νynm= νy - mδν; (νxnm, νynm ) is the coordinate in the basic unit coordinate system; h0 

is the constant amplitude; the products of the rect functions accounts for the role of the inverted domains. 

The Fourier transform of h(νx, νy) , which represents the complex electric field in the image plane, can 

be written as the superposition of Fourier transform of hnm(νxnm, νynm):
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where, (xnm, ynm) is the Fourier space coordinate corresponding to the basic unit coordinate system (νxnm, 

νynm). From the sampling theorem we get  the largest permissible xnm as:

                                                                                                                                                                             (S3)
1=nmx


Substitution of Equation (S1) into Equation (S2) gives:
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follwing constraints should also be mentioned here: , . Therefore, Equation (S4) 
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can be rewritten as:
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Equation (S7) can be rewritten as: 

                                                                                                                                   (S8)   
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m)-th basic unit. In order to simplify the process without sacrificing the conversion efficiency, we choose 

Wnm=1 and c=1/2. Substitution of Equation (S3) into Equation (S8) gives:

                                                                                                                                        (S9)   
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The desired SHG field at far field can also be expressed as its general form:

                                                                                                                (S10)     ' x, = ' exp expnm nm nm
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The equalization of the phase term in Equation (S9) and phase in Equation (S10) leads to a simple 

equation:
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where, nm is the phase shift of transmitted SHG at far field given by the (n, m)-th basic unit. It shows 

the SHG phase shift (nm) from the (n, m)-th unit is determined by the distance between the center of 

the inverted domain and the center of the basic unit (Pnm) .

2. Measurement of mean diameter of randomly distributed ferroelectric domains

For a particular distributed random domain pattern with average domain diameter, Dmax , the Fourier 

transform of the domain pattern gives the G spectrum with a corresponding mean value Gmax. The 

quantitative relationship between these two parameters can be connected with formula Dmax= π/ Gmax
[S1]. 

The phase image obtained by the Atomic Force Microscope (Bruker Dimension Edge) in the 

Piezoelectric Force Microscope (PFM) mode is shown in Figure S1a, where the light yellow represents 

the “up” domain and dark brown represents the “down” domain. The 2D reciprocal lattice vector G 

spectrum of the antiparallel domain structure, obtained as Fourier transform of the spatial ferroelectric 

domain pattern, is plotted in Figure S1b. The corresponding distribution of the magnitude of the 

reciprocal vector G is demonstrated in Figure S1c, where the average G value is Gmax=30 μm-1. The 

resulting average domain diameter corresponding to Gmax is Dmax= π/ Gmax = 100 nm [S1].

Figure S1. The measurement of mean diameter of randomly distributed ferroelectric domains in as-grown SBN-
75 crystal. (a) The phase image obtained by the Atomic Force Microscope (Bruker Dimension Edge) in the 
Piezoelectric Force Microscope (PFM) mode. (b) 2D reciprocal lattice vector G spectrum of the antiparallel 
domain structure, obtained as Fourier transform of the spatial ferroelectric domain pattern. (c) The corresponding 
distribution of the magnitude of the reciprocal vector G. The maximum corresponds to the reciprocal vector with  
Gmax=30 μm-1. The resulting average domain diameter corresponding to Gmax is Dmax= π/ Gmax = 100 nm.
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3. High-quality nonlinear holographic imaging of letter ‘H’ 

We have performed numerical simulations to obtain quality-improved holographic imaging of 

letter ‘H’ with the nonlinear detour phase method by increasing the pixel number of phase plate 

and the fabrication accuracy, as shown in Figure S2. The left and right columns show the 

holographic image from the same-sized holograms (304 μm  304 μm) but with different pixel 

numbers and fabrication resolutions, respectively. Figure S2a shows the SHG phase map with 

4548 pixels in total. The reconstructed hologram is shown in Figure S2b with 1 μm resolution. 

The bottom inset is the enlarged hologram pattern within the marked pink frame, where the 

stripe-shaped inverted domain patterns reflecting the characteristics of nonlinear detour phase 

method can be clearly seen. In this case, the width of each basic unit (P1, P2, P3, P4) is 4 μm. 

Figure S2c presents the simulated nonlinear holographic image. It can be clearly seen that with 

the increased number of pixels the image quality of the nonlinear detour hologram (4548 pixels) 

becomes better than that presented in Figure 3c (1124 pixels). To further improve the 

holographic image, we increase the fabrication resolution 2 times and keep the hologram size 

unchanged. Then the width of each basic unit (P1, P2, P3, P4) is 2 μm and the phase plate contains 

a total of 18168 pixels. The corresponding phase map at the hologram plane is shown in Figure 

S2d, and the SHG hologram composed of narrower inverted domains is presented in Figure 

S2e. Figure S2f shows the simulated nonlinear holographic image. It can be clearly seen that 

with the increased fabrication accuracy the holographic image is further improved.
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Figure S2. Numerical simulations of quality-improved holographic imaging of letter ‘H’ with the proposed nonlinear detour 
phase method by increasing the pixel number of phase plate and fabrication accuracy. (a, b, c) When the fabrication resolution 
is 1 μm, the calculated SHG phase map (a), the reconstructed hologram (b) and the simulated nonlinear holographic image (c). 
(d, e, f) When the fabrication resolution is 0.5 μm, the numerically calculated SHG phase map (d), the reconstructed hologram 
(e) and the simulated nonlinear holographic image (f).

4. Comparison of holographic images reconstructed by nonlinear detour phase 

hologram and nonlinear binary phase hologram 

We have performed the numerical simulations of holographic image of ‘hot coffee’ 

reconstructed by the nonlinear binary phase hologram[S2] and the proposed nonlinear detour 

phase hologram (considering the same pixel number of phase plate and 1-μm fabrication 

resolution) as presented in Figure S3. Specifically, Figure S3a presents the simulation result 
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with nonlinear binary phase hologram. The top row shows the amplitude and phase of the 

Fourier transform of the desired wavefront (the target ‘hot coffee’ image is shown in the insert). 

The reconstructed binary phase hologram and the enlarged pattern at the marked area is shown 

in the middle row. The simulated nonlinear holographic image is displayed in the bottom row. 

For comparison, Figure S3b presents the simulation result with nonlinear detour phase 

hologram. It can be clearly seen, the imaging quality of nonlinear detour phase hologram is 

superior to the general nonlinear binary phase hologram.  

The nonlinear binary phase hologram is a general method for reconstructing holographic 

imaging. The calculated nonlinearity modulation pattern is always as complicated as ‘Quick 

Response (QR) codes’ due to the direct Fourier transform of the desired wavefront. Therefore, 

using the actual fabrication accuracy (which is 1 μm in this case) to approach this complicated 

pattern will induce large processing errors, which usually results in low quality holographic 

imaging. To solve this problem, one can optimize the nonlinear hologram to make it compatible 

with the experimentally achieved fabrication resolution. The proposed nonlinear detour phase 

hologram is a simple and effective method due to its highly simplified pattern, which can be 

reconstructed with experimentally achieved fabrication accuracy. To sum up, nonlinear binary 

phase hologram is always accompanied by large processing errors leading to a low holographic 

imaging quality, while as a simple and effect method this proposed nonlinear detour phase 

hologram plays an important role in improvement of image quality.
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Figure S3. Comparison of the holographic images of ‘hot coffee’ reconstructed by nonlinear binary phase hologram and 
nonlinear detour phase hologram (pixel number of phase plate and fabrication resolution setting as 7860 and 1-μm). (a) 
Simulation result with nonlinear binary phase hologram. (b) Simulation result with nonlinear detour phase hologram. (Up row) 
The calculated phases and amplitudes at hologram plane. (Middle row) The reconstructed holograms and the expanded view 
of hologram pattern at the marked areas. (Bottom row) The simulated nonlinear holographic images and expanded view of the 
marked area. Clearly, holographic image quality of nonlinear detour phase hologram is superior to nonlinear binary phase 
hologram.
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