Supporting Information

Nitrogen-Doped NiCo $_2S_4$ /CoO hollow multi-layered heterostructure microsphere for efficient oxygen evolution in the Zn-air battery

Bin He^{ab}, Juan-Juan Song^a, Xiao-Yu Li^b, Chun-Yu Xu^b, Yi-Bo Li^b, Ya-Wen Tang^b, Qing-Li Hao^{a*}, Hong-Ke Liu^{b*} and Zhi Su^{b*}

^a Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China.
E-mail: qinglihao@njust.edu.cn
^b Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
F-mail: zhisu@njnu.edu.cn, <u>liuhongke@njnu.edu.cn</u>

catalyst	Overpotential (mV)	Reference
N-NiCo ₂ S ₄ /CoO	238	This work
NiFe/NiCo ₂ O ₄ /NF	340	1
amorphous CoP/NF	284	2
Ni-Co-P HNBs	270	3
NiCoP@NF	280	4
NiCo ₂ S ₄ nanoflake/NF	319	5
Ni ₃ S ₂ @MoS ₂ /FeOOH	260	6
Mo-Co(OH) ₂ HNTs	218	7
Ni ₃ (BO ₃) ₂ -Ni ₃ S ₂ /NF	217	8
Ni/Ni(OH) ₂ nanosheets	270	9
FeNiB/FeNi foam-700	272	10
Pt@Co ₃ O ₄ /NF	260	11
Co ₄ N-CeO ₂	239	12

Table S1. OER performances of N-NiCo₂S₄/CoO microsphere in comparison of recentlyrepresentative electrocatalysts in alkaline medium (1.0 M KOH, at 10 mA cm⁻²).

	NiCoS	N-NiCo ₂ S ₄ /CoO
catalyst composition	NiS ₂ /NiO	N-NiCo ₂ S ₄ /CoO
synthesis method	sulfur powder vulcanization	sulfur powder vulcanization in the presence of NH ₄ HCO ₃
working electrode	glassy carbon electrode	nickel foam electrode
electrocatalytic property	HER	OER

Table S2. The main differences of N-NiCo₂S₄/CoO microsphere in comparison of Ni-Co-S multishell hollow microspheres.

Fig. S1. SEM images of NiCo-BTC MOF microsphere.

Fig. S2. (a) SEM and (b) TEM images of the NiCo₂O₄ microsphere.

Fig. S3. Nitrogen adsorption-desorption isotherms and Pore size distributions of N-NiCo₂S₄/CoO.

Fig. S4. SEM (a) and TEM image (b) of the NiCo₂S₄/CoO microsphere.

Fig. S5. Cyclic voltammogram (CV) curves of (a) $NiCo_2O_4$, (b) $NiCo_2S_4/CoO$ and (c) $N-NiCo_2S_4/CoO$ samples.

Fig. S6. (a) LSV curves normalized by ECSA and (b) The normalized current density by ECSA at 300 mV overpotential of NiCo₂O₄, NiCo₂S₄/CoO and N-NiCo₂S₄/CoO.

Fig. S7. (a) XRD patterns of $NiCo_2S_4$ and CoO, (b) LSV polarization curves of $NiCo_2S_4$, CoO and $NiCo_2S_4/CoO$.

Fig. S8. High-resolution XPS spectra at Ni 2p (a) and Co 2p (b) for N-NiCo₂S₄/CoO microshphere after OER test.

Fig. S9. XRD pattern of N-NiCo₂S₄/CoO microshphere after OER test.

Fig. S10. SEM (a) and TEM images (b) for N-NiCo₂S₄/CoO microsphere after OER test.

Fig. S11. A LED lamp (~ 3.0 V) could be powered up by two Zn-air batteries in serious with the N-NiCo₂S₄/CoO + Pt/C catalyst as air-cathode.

References

- 1. C. L. Xiao, Y. Li, X. Lu and C. Zhao, Adv. Funct. Mater., 2016, 26, 3515-3523.
- 2. R. BeltráelSuito, P. W. Menezes and M. Driess, J. Mater. Chem. A., 2019, 7, 15749-15756.
- 3. E. L. Hu, Y. F. Feng, J. Nai, D. Zhao, Y. Hu and X. W. Lou, *Energy Environ. Sci.*, 2018, **11**, 872-880.
- 4. H. F. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlogl and H. N. Alshareef, *Nano Lett.*, 2016, **16**, 7718-7725.
- 5. J. Yu, C. Lv, L. Zhao, L. Zhang, Z. Wang and Q. Liu, Adv. Mater. Interfaces. 2018, 5, 1701396.
- 6. M. Zheng, K. Guo, W. J. Jiang, T. Tang, X. Wang, P. Zhou, J. Du, Y. Zhao, C. Xu and J. S. Hu, *Appl. Catal. B: Environ.*, 2019, **244**, 1004-1012.
- 7. C. Y. Xu, W. Lu, L. Yan, J. Q. Ning, C. Zheng, Y. J. Zhong, Z. Zhang and Y. Hu, *J Colloid Interface Sci.*, 2020, **562**, 400-408.
- 8. Z. Sun, X. Wang, M. Yuan, H. Yang, Y. Su, K. Shi, C. Nan, H. Li, G. Sun, J. Zhu, X. Yang and S. Chen, *ACS Appl. Mater. Interfaces.*, 2020, **12**, 23896-23903.
- 9. L. Dai, Z. N. Chen, L. Li, P. Yin, Z. Liu and H. Zhang, Adv Mater., 2020, 32, 1906915.
- 10. H. F. Yuan, S. M. Wang, X. D. Gu, B. Tang, J. P. Li and X. G. Wang, *J. Mater. Chem. A*, 2019, **7**, 19554-19564.
- 11. L. Huang, M. Wei, S. Zaman, A. Ali and B. Y. Xia, Chem. Eng. J., 2020, 398, 125669.
- 12. H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C. P. Li and M. Du, *Adv. Funct. Mater.*, 2020, 1910596.