Supporting Information

Structure Determination of a Metastable Au₂₂(SAdm)₁₆ Nanocluster and Its Spontaneous Transformation into Au₂₁(SAdm)₁₅

Qinzhen Li,^a Sha Yang,^c Tao Chen,^a Shan Jin,^c Jinsong Chai,^{*b,c} Hui Zhang^{*a} and

Manzhou Zhu^{*b,c}

^a School of Physics and Materials Science, Anhui University, Hefei, Anhui, 230601, People's Republic of China

^b Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Auhui University, Hefei, Anhui, 230601, China.

^c Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.

Fig. S1 Photograph of the raw product separated by TLC plate.

Fig. S2 UV-vis spectrum (a) and ESI-MS pattern (b) of the Au_{21} purified by TLC plate. Inset shows the calculated isotopic pattern of Au_{21} with +2 charge (red) compared with the experimental signal (black).

Fig. S3 ESI-MS spectrum of Au_{22} with prolonged acquisition time showing the $[Au_{22}(SAdm)_{16} + Ag^+]$ species.

Fig. S4 TGA curve of Au₂₂.

Fig. S5 Total structure of Au₂₂ (color labels: yellow = Au, red = S, gray = C, white = H).

 Table S1. Crystal data for Au₂₂.

	Au ₂₂
Empirical formula	C160 H240 Au22 S16
Formula weight	7009.73
Temperature	120 K
Wavelength	1.54186 Å
Crystal system	monoclinic
Space group	$P2_1/c$
Unit cell dimensions	a = 16.3688(16)
	b = 32.3268(9)
	c = 36.999(2)
	$\alpha = 90^{\circ}$
	$\beta = 97.356(7)^{\circ}$
	$\gamma = 90^{\circ}$
	$\alpha = 90^{\circ}$ $\beta = 97.356(7)^{\circ}$ $\gamma = 90^{\circ}$

Volume	19417(2)	
Z	4	
Density (calculated)	2.398 g/cm ³	
Absorption coefficient	32.258	
F(000)	12776	
Crystal size	0.1 x 0.07 x 0.06 mm ³	

Table S2. Comparison of bond lengths in Au_{22} and Au_{21} .

	Au ₂₂	Au ₂₁	Diff.
Au(core)-Au(core)	2.61-3.22 Å (Avg. 2.81 Å)	2.65-3.20 Å (Avg. 2.84 Å)	-0.88%
Au(core)-Au(motif)	2.85-3.20 Å (Avg. 3.03 Å)	2.84-3.25 Å (Avg. 3.02 Å)	+0.33%
Au(core)-S(motif)	2.35-2.39 Å (Avg. 2.36 Å)	2.22-2.46 Å (Avg. 2.35 Å)	+0.42%
Au(motif)-S(motif)	2.27-2.32 Å (Avg. 2.30 Å)	2.15-2.45 Å (Avg. 2.31 Å)	-0.43%

Fig. S6 Packing mode of Au_{21} viewed from the a axle (a), b axle (b) and c axle (c) and Au_{22} viewed from the a axle (d), b axle (e) and c axle (f). (color labels: yellow = Au; red = S; grey = C; white = H).

Fig. S7 UV-vis spectra of Au_{21} (black curve) and Au_{21} reacting with Au-SAdm complex for 12 h (red curve).

Fig. S8 Time-dependent UV-vis spectra of Au_{22} in n-Hex.

Fig. S9 Time-dependent UV-vis spectra of Au_{22} in toluene.

Fig. S10 Time-dependent UV-vis spectra of Au_{22} in deoxidized CHCl₃ under N_2 atmosphere.

Fig. S11 Time-dependent UV-vis spectra of Au₂₂ in CHCl₃/EtOH.

Fig. S12 Time-dependent UV-vis spectra of Au₂₂ in CHCl₃/Et₂O.

Fig. S13 Time-dependent UV-vis spectra of Au₂₂ in CHCl₃/MeCN.